
Component Based Approach to Modeling for Model Checking

John D. Powell
Caltech, Jet Propulsion Laboratory

John. Powell @,iul. - nasa. gov

Abstract

Vulnerabilities in concurrent sojiware systems and
sojiware applications render an otherwise safe and
network secure environment unsde and insecure. Any
sofiware system or application added to a safdsecure
environment that has exploitable security vulnerabilities
a#iects the security and sdety ofthe whole environment.
Thus, a system can be compromised easily ifthe system or
application software on it, or on a linked system, has
vulnerabilities. Therefore, it is critical that software be
peepom such vulnerabiIities.

Vulnerabilities in software arise from a number of
development factors; but these vulnerabilities can
generally be traced to poor software development
practices, new modes of network attach, mis-
coqfigurations, and dangerous interaction between
systems.

A formal software assessment methodology can aid
in providing a greater level of assurance that software is
not exposed to vulnerabilities as a result of defective
software requirements and designs or exposures due to
compIexity and integration with other applications that
are developed in parallel or subsequently added to the
system.

This paper presents a portion of an overall
research project on the generation of a sofiare security
assessment instrument to aid developers in assessing and
assuring the security of software in the development and
maintenance lvecycles. This portion focuses on modeling
requirements and early lifecycle designs to discover
vulnerabilities that resultpom interaction between system
components that are either under development in a new
system or proposed as additions to an existing system or
environment. There are early indications that a new
approach, the Flexible Modeling Framework (FMF) has
promise in the areas of network security as well as other
critical areas such as system sajety. Information about
the overall research eflort regarding network security is
available at: httv://securitv.ivl. nasa.gov/rssr.

Keywords

David P. Gilliam
Caltech, Jet Propulsion Laboratory

david. u. Gilliam@,iul. nasa.gov

Model Checking, Security, Safety, Formal
Verification, Security Toolset

1. Introduction

The National Aeronautics and Space
Administration (NASA) has funded the Jet
Propulsion Lab to develop a software security
assessment for use in the software development and
maintenance life cycle. One major goal of the effort
is the use of a formal analytical approach, such as
Model Checking (MC), for integrating security into
existing and emerging practices for developing high
quality software and computer systems.

Software on networked computer systems must
be free from security vulnerabilities. Vulnerabilities
in software arise f?om a number of development
factors that can generally be traced to poor software
development practices, new modes of attacks in the
network security arena, mis-configurations, and
unsafe interaction between systems and/or their
components. An otherwise safe and secure system
can be compromised easily if the system or
application software on it, or on a linked system, has
vulnerabilities. This presents a verification problem
for networked systems because the builders of a
system often have little or no knowledgehontrol
over systems that will be liked to it if it makes use of
network connectivity. The most extreme case is
when a system is connected to the Internet. MC
offers a means for examining component interaction
in relation to critical system properties such as
safety and security. [1,9,10,11,12]

Currently, the use of MC as means of
verification to mitigate these vulnerabilities during
the software development and maintenance life
cycle suffers from some practical limitations.
Among these limitations are:

http://nasa.gov

For example, to reconstruct the knowledge
contained in Figure 4 in light of a modification to C1
only C1 itself and the combination of C1 and C2
(And-1) need to be re-verified. The results of re-
verifying the remaining componentdcombination
would only replicate the results of the previous set
of verifications. This represent a savings in that 6
verifications (Cl, C2, C3, C4, And-1, And-2) were
needed to originally capture the knowledge in
Figure 4 but only 2 re-verifications were needed to
reconstruct the knowledge in light of the
modification.

This will result in a decreased cycle time for
verification of model updates thus improving the
timeliness of the formal verification results.
Further, as more is lamed about the system’s
specific manner of accomplishing its task(s) the
affected model components can be:

0 Modified to reflect the more detailed
approaches developed during the design
phase to maintain model fidelity in a timely
manner.

0 Segmented into its own series of
components when the complexity of the
high level component begins to exhibit state
space explosion problems. This allows
logical grouping of related components
while still allowing incrementally inclusion
of parts of complex logical system entity in
combinations where the state space is
reaching MC thresholds.

There are numerous instances in which one must
view a system or set of systems at a very abstract
level before examining one or more parts in greater
detail. In the security arena one will view a large
network system from an extremely high level where
protocols must be understood and systems within it
are arbitrary connected entities. When one is
building a system that will interact with a network
the focus on that particular system entity becomes
more detailed but the remainder of the network is
still viewed very abstractly. The levels of detail in
which a component/entity is modeled and examined
is referred to as its resolution throughout this paper.
As specific interaction with other systems are
defined the resolution of those systems necessarily
becomes somewhat more detailed to deal with issues
such as:

0 How will that system handle transmission
from the system being developed?

0 In what way will that system respond to the
system under development?

Further, the system under development will be
decomposed at a high level in to various network
aware and non-network aware component, which
will be subsequently view with varying levels of
resolution. (See Section 2.3) Consider a system
where network aware components such as
application and login functions are interacting with
non-network aware components such as routines on
a local printer. At this level there are network aware
components on the computer system, components
making up the network environment, and
components making up the local printer. (See Figure
5) At this level it is appears reasonable to believe
that the computer system is interacting with the
network and thus should be responsible for security.
The printer is local (i.e. non-network aware) thus
need not concem itself with network security and
may rely wholly on the computer system in that
regard. In the next section we will examine variable
resolution of components and continue the example
to illustrate that the above suppositions may not be
true.

I I Network Environment

-
Computer System

p-l Fl ... F l

Local Printer

Figure 5: Examle System - High Level

23. Non-Uniform Component Resolution
In the FMF approach components are viewed

not only as a matrix of combinable components (See
Figure 6) created at a given level of detail
(resolution) but also as a 3-dimential space of
models where by component versions of different
resolutions may be selected to manage state space
explosion. Therefore, the tolerable state space
maybe spread across several components in varying
amounts, which together from a state space that is
feasible for MC. The approach of building model
components, as opposed to a single model, allows
localized modification and enhancement of model
behavior and detail in order to examine subsets of
the system at various non-uniform levels of
resolution. The FMF component methodology
provides the ability to make tradeoffs in resolution
between components while maintain the size of the
state space within tolerable limits. The process of
enhancing model components as more is learned
about the system results in a series of component
versions. When archived for later use they provide a
readily usable facility for producing component
combinations with non-uniform resolutions. This is
done by selecting the components for the
combination and then specifLing what version
(resolution) of the component to use. For example
(See Figure 6) assume that:

Cn is a component at its lowest resolution
(least detail)
Cn.3 is a component model with the highest
resolution (greatest detail).
All 9 components taken together at the
Cn.1 level of resolution is just under the
state space feasibility limit.

With the above assumptions, the ability to
investigate one component in detail (Cn.3 level) is
facilitated by accepting lower levels of resolution
(Cn level) in other components. Raising the
resolution in one component increases the state
space. Conversely, lowering resolution decreases
the state space. Therefore, to gain maximum
benefits from the available memory resources the
resolution is increased until the threshold is almost
reached. By remaining just below 100% available
memory usage, property verification over model
component versions whose average resolution is the
highest feasible. The analyst may then continue to
make tradeoffs to probe various parts of the system

in greater detail by increasing resolution on one
component and decreasing it on others.

Uniform Resolution

w C7.3 C8.3 C9.3

Non-Uniform Resolution

Figure 6: Component Resolution

Recall the example from Figure 5 where a
printer with no network capability need not concern
itself with security issues. To gain a higher
confidence that this is the case the components
within each system (Network, Computer, Printer)
must be examined at a higher resolution. It is
apparent that examination of all components at a
high level of resolution is an infeasible task for MC
with reasonable memory constraints. Thus a process
is undertaken to gradually:

Increase the “resolution” on the computer
system and the printer
Lower the “resolution” on the network
environment.
Lower resolution or rule out some of the
non-interacting components within the
computer and printer.

This process can reveal useful connections to
between the printer components and those
components on the computer system that are
security critical. (See Figure 7) While printer
components like CPl, do not directly interact with
the network it now may be possible for them to

later be strategically combined for system
verification purposes. This correlates the modeling
function with modern software engineering and
architecture practices whereby a system is divided
into major parts, and subsequently into smaller
detailed parts, and then integrated to build up a
software system. An initial series of simple
components can be built when few operational
specifics are known about the system. However,
these components can be combined and verified for
consistency with properties of interest such as
software security properties.

Figure 4: Comnonent Relationsh ins

The approach of compositional verification used
in the FMF seeks to verify properties over individual
model components and then over strategic
combinations of them. The goals of this approach
are to: 1) infer verification results over systems that
are otherwise too large and complex for model
checking from results of strategic subsets
(combinations) while minimizing false reports of
defects; 2) retain verification results from individual
components and component combinations to
increase the efficiency of subsequent verification
attempts in light of modifications to a component.

The FMF verification process begins determining
which model components are safe and unsafe with
respect to the property in question. Then, the
strategic combination process seeks to build up
relationships between components. Figure 4 shows
an example where the components C1 and C3 are
safe with respect to some security property while the
states Cz and C4 are unsafe. Relationships between
CI and C2 as well as C3 and C4 are shown. Since C2

is individually unsafe, C1 is individually safe and the
combination C1 and C2 is safe, C1 is said to mitigate
C2 with respect to the property in question.
Conversely C3 is safe and C4 is unsafe and the
combination of the two components is unsafe. In
this case C4 is said to undermine C3.

Network security professionals and builders of
network systems are faced with an overwhelming
task of either maintaining or defending against many
systems to which their system is or will be linked.

These linked systems are often heterogeneous
with respect to the software application sets that are
running on them. Many will run various
Combinations and subsets of common software
applications along with less common specialized
applications. The FMF seeks to retain information
about dangerous combinations of software. Further,
the framework provides a means by which new
combinations encountered by network professionals
can be formed from existing models and quickly
evaluated for their potential effects on linked
systems.

It bears noting that two components that are
labeled individually safe may produce and unsafe
security condition when combined and vise versa.
Similar to testing of an implementation, two
modules that have undergone unit testing and passed
may later produce problems during integration
testing. These problems may be traced to such
phenomena as timing issues resulting in race
conditions or unexpected interactions due to the
absence of reasonableness checks on input values
for one or both modules. The FMF allows
investigation of such possibilities at an earlier point
in the life cycle before an implementation exists.

Maintaining the network of relationships for each
property will allow future verifications of the
property to be accomplished by noting the
relationships that were used to make earlier
verification inferences and only re-verifying the
relationships affected by a component change or
addition as the system evolves. When changes are
made to the model only the affected components
need be modified and re-verified. By retaining
knowledge h m previous verifications, the effort of
re-verifying properties may be reduced significantly
due to the fact that only the changed components,
and combinations including one or more of them,
need be re-verified.

errors are found in the early lifecycle sample
test specification can be preserved for use by the
PBT to provide traceability verification.

Model based verification techniques, such as
Model Checking, are not without drawbacks.
Among them is the inability to model a system with
a high degree of fidelity in a timely manner while
the system evolves. This is particularly problematic
in the earliest stage of development such as concept,
requirements and high-level design when the system
definition is most volatile. MC's lack of agility
limits an analyst's ability to maintain an up to date
model and minimize the latency between the
introduction of errors and their discovery.

Process P2 Process P 1

Figure 1: Concurrent Processes

A limitation specific to model checking is the
state space explosion problem. [lo] Similar to the
growth of the operational space mentioned above,
the state space that a model checker must search to
verify properties grows at an exponential rate as the
model becomes more detailed. As shown in figures
1 through 3 the state space grows at a rate of m"
where m is the range of possible values a variable
may assume and n is the number of variables in the
model. Despite the use of modeling techniques such
as abstraction and homomorphic reduction it is
infeasible to veri@ many software systems in their
entirety though model checking beyond those that
are either complex and very small or moderate in
size and very simplistic.

Processors P1, P2

...

Figure 2: Interleaving Concurrent Processes

Figure 3: State Space

2.2. The Flexible Modeling Framework
An innovative verification approach that employs

model checking as its core technology is offered as a
means to bring software security issues under formal
control early in the life cycle while mitigating the
drawbacks discussed above. The Flexible Modeling
Framework (FMF) seeks to address the problem
formal verification of larger system by a divide and
conquer approach. First verifying a property over
portions of the system. Then, incrementally
inferring the results over larger subsets of the entire
system. As such the FMF is a:

System for building models in a component
based manner to cope with system evolution
in a timely manner
Compositional verification approach to delay
the effects of state space explosion and allow
property verification results to be examined
with respect to larger, complex models.

Modeling in a component-based manner involves
the building of a series of small models, which will

e Limits on the size and complexity of
systems that may benefit from MC
given reasonable computer memory
resources.

0 Difficulty in rapid development,
modification and verification of models
in a timely manner during the early life
cycle when systems tend to change and
evolve quickly.

The MC approach discussed in this paper seeks
to develop a tool-supported methodology to support
the model-based verification of software systems in
an agile manner that can cope with memory resource
constraints to a reasonable degree. Specifically, the
Flexible Modeling Framework (FMF) offers a
formal MC approach for engineering safety andor
network security into software systems and
application throughout the software development
and maintenance life cycles.

Model based verification uses precise
abstractions. It offers the ability to verify security
properties over system models early in the life cycle
- before an implementation exists. MC can
effectively identify security anomalies that have not
been discovered as a result of a known network
security attack. These new anomalies may then be
added to a stored Vulnerability Matrix (vmatrix).
(See Section 3.2) Anomalies that are found in early
lifecycle phases through the examination of
abstractions (models) can be preserved and later
passed on to additional technologies such as the
Property Based Tester (PBT) [1,3,4,5] for
verification at the code level. (See Section 3.2)

Assessments of high profile NASA systems
believed to be vulnerable to network security attacks
will provide a metric to determine the effectiveness
of these activities and prototypes. The security
assessment instrument will be verified on a
JPLLNASA Class A Flight Project to assess the
approach and the viability of the FMF for assuring
the security of software on critical networked
systems.

2. Model-Based Security Specification and
Verification

Model based specification and verification make
use of discrete finite models to verify compliance of
the model to desired properties. In the cases

mentioned here, software safety and network
security properties. Network security andor safety
properties often focus on characteristics that are
manifested though the operation of multiple
software components and systems operating
concurrently with or without an attacking process.
The concurrent nature of the systems results in an
operational space that is too large to veri@ system
properties effectively through traditional testing of
the implementation. Further, vulnerabilities
introduced in the early phases of the development
lifecycle are costly to remove in later phases when
an implementation is being tested. This results in
the addition of cumbersome workarounds and
“patches” to repair the software system which
themselves could introduce new vulnerabilities.
Model Based Specification offers the opportunity to
perform verification of properties early in the life
cycle, providing a clearer understanding of the
vulnerability issues within the system before an
implementation exists.

The FMF approach is currently under
development and shows promise for early life cycle
detection of security vulnerabilities. The approach
may be generalized and/or tailored in future work
for applicability to non-security domains such as
safety.

2.1. Model Checking
Model checkers automatically explore all paths

in a finite state space from a given start state in a
computational tree. The objective is to verify
system properties over all possible scenarios within
a model. Model Checkers differ from more
traditional heavyweight formal techniques in that:

Model checkers are operational as opposed to
deductive. Deductive approaches, while offering
a higher level of completeness and are more
resilient in the face of larger systems, are
difficult to apply and require a great deal of
expertise.
Model checkers provide counter examples when
properties are violated. The counter examples
may be used to determine the cause of the
property violation and as representative traces
for test case generation. [6,7]
Their goal is oriented toward finding errors as
opposed to proving correctness since the model
is an abstraction of the actual system. Where

interact with otherwise secure computer system
components in a manner that renders them unsecure.

An attack similar to this scenario above has
been seen before. The attack managed to exploit
interactions between computer system components
to send a message to the printer with additional data
embedded in it. At a higher level it appears that a
component on a computer system is sending a
routine message to a local (non-networked) printer -
a harmless interaction. Thus, the message is not
scrutinized by the computer system because it is a
non-network aware activity. Therefore the message
is allowed to proceed to a seemingly non-critical
area (the local printer). However because the printer
did not address network security concerns either it
failed to identify that its normal responses back to
the computer system were actually giving an
unauthorized outside party root access to the
computer system. From there the attacker had
access to the entire network.

Network Environment

I Computer System

Figure 7: Example System - Lower Level

3. FMF Integration with other Technologies

The FMF is intended as a verification
technolo= that can stand-alone but may also be
combined with other technologies to afford
maximum benefit and usability. [1 1,121

3.1. State chart Representations and Tools
FMF makes use of an internal state chart
representation as its means of representing models.
This representation currently encompasses a subset
of possible state notations. Elements initially
supported by the approach are those that are
generally interpreted in a consistent manner in most
state chart representations. The currently supported
notation features are:

0 Conditional and unconditional transition
between states.

0 State definitions that include abstract
assignment of system variable state values.

0 Finite arithmetic assignment to a state’s
variable values. For example, (a = @+I)
mod IO) is fmite while (a = a +I) is not
because the number of visits to the state in a
possible execution is generally unknown at
the time of verification.

The use of state chart representations, as
opposed to modeling languages such as Promela
[lo], provide the opportunity to employ existing
robust state chart specification systems as an
interface to FMF tool support capabilities.

3.2. Other Verification Systems
In the network security arena an integrated

approach, which includes the FMF as a model-based
verification element, for assessing security
vulnerabilities is being explored. The other parts of
the Security Assessment Instrument are PBT and the
VMatrix.

PBT is an approach that allows the analyst to
systematically test an implementation for adherence
to various properties by making use of a support tool
called the Tester’s Assistant (TA). [1,3,11,12] First,
the property is expressed in a form that the TA
accepts as input. Then, an analyst uses the PBT to
systematically insert assertions that are pertinent to
the property into an implementation and exercises
the implementation. The objective is to discover
traces through the implementation that produce a
non-confoming scenario.

Vmatrix

Attach not m the wild A'

Discovered atEadrs not been seen m the wild
Known attacks fir Vmatrix / PBT Libaries

.-

Firmre 8: Technologv Inteaation

The Vmatrix, examines vulnerabilities,
exposures and the methods used to exploit them.
Vulnerabilities and exposures are listed along with
their Common Vulnerabilities and Exposures (CVE)
listing. [2] The VMatrix includes:

0 A brief summary and a description of the
vulnerability or exposure.

0 The affected software or operating system.
0 The means necessary to detect the

vulnerability or exposure and the fix or
method for protecting against the exploit.
Catalogue information, keywords, and other
related information as available, regarding
the vulnerability or exposure.

The individual parts of the Security Assessment
Instrument can be used separately or in combination
(See Figure 8) to provide the additional benefits of:

0 Reduced rework to identify security
properties.

0 Increased confidence in the system through
verification at multiple times during the
development and maintenance lifecycle
One tool is capable of verifLing the input
and output of other tools in the network
security instrument.
Finding additional network security attacks
yet to be seen in the wild (attacks that have
not yet been seen outside of a laboratory
environment) and test for their viability and
seventy.

0

0

0

In addition to developing an abstract model of a
system and performing MC verification, properties
of interest must be defined. The identification of
specific system critical properties that warrant
formal verification is a non-trivial task. Integration
of the FMF with the VMatrix addresses this problem
for the network security arena. The VMatrix [1,2]
provides a searchable knowledge base from which
properties may be extrapolated for use with the FMF
in the role of a MC function within the instrument.
This knowledge base can also accommodate the
discovery of new network security attacks not yet
seen in the wild that may be discovered through MC
techniques.

The network security instrument also provides a
Property based testing tool [1,2,4] that verifies
properties against the actual implementation of a
software system. These properties are also extracted
from the VMatrix. Used with the FMF, PBT can
provide verification of a system implementation's
fidelity to the model(s) of early lifecycle artifacts
(Requirements and Designs).

4. Conclusion

Reducing the number of vulnerabilities in
software systems is critical in computer systems that
pedorm safety critical functions andor make use of
network connectivity. The use of formal approaches
such as MC enhances the ability of developers and
analysts to discover vulnerabilities arising through
unsafe interactions between systems and/or
otherwise safe software components. The FMF
approach provides the benefits derived from MC
while mitigating limitations posed by system size
and complexity as well as requirements and design
volatility during the early lifecycle phases. The FMF
attempts to capitalize on the benefits of existing
technologies in a manner that maximizes usability
and minimizes duplication of effort between
approaches.

Integrating software security and d e t y into
existing and emerging practices is critical for
developing high quality software. The Flexible
Modezing Frumework (FMF) offers a formal
approach achieving such integration throughout the
software development and maintenance life cycles.
The approach seeks to maximize these benefits by
attempting to integrate with, as opposed to

replacing, existing verification technologies. While
work on this research effort is ongoing, the approach
has shown considerable promise and gamered
interest from JPL projects as a means’of increasing
confidence in the safety and security of software
during development.

5. Acknowledgements

The research described in this paper is being
carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract
with the National Aeronautics and Space
Administration, and the University of California at
Davis under a subcontract with the Jet Propulsion
Laboratory, California Institute of Technology.

6. References

[l] D. Gilliam, J. Kelly, M. Bishop, “Reducing
Software Security Risk Through an Integrated
Approach,” Proc. of the Ninth IEEE International
Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (June,
2000), Gaithersburg, MD, pp.141-146.

[2] Published and maintained by Mitre. The CVE
listing can be found at: http://cve.mitre.org/

[3] G. Fink, M. Bishop, “Property Based Testing: A
New Approach to Testing for Assurance,” ACM
SIGSOFT Software Engineering Notes 22(4) (July
1997).

[4] M. Bishop, “Vulnerabilities Analysis,”
Proceedings of the Recent Advances in Intrusion
Detection (Sep. 1999).

[5] J. Dodson, “Specification and Classification of
Generic Security Flaws for the Tester’s Assistant
Library,” M.S. Thesis, Department of Computer
Science, University of California at Davis, Davis
CA (June 1996).

[7] P. E. Ammann, P. E. Black and W. Majurski.
“Using Model Checking to Generate Test
Specifications,” 2nd International Conference on
Formal Engineering Methods (1998) pp. 46-54.

[SI G. Lowe. Breaking and Fixing the Needham-
Schroeder Public Key Protocol Using CSP and
FDR. In TACAS96,1996.

[9] W. Wen and F Mizoguchi. Model checking
Security Protocols: A Case Study Using SPIN, IMC
Technical Report, November, 1998.

[lo] G. Hohann . Design and Validation of
Computer Protocols. Prentice Hall 1990; ISBN:
0135399254.

[1 11 D. Gilliam, J. Kelly, J. Powell, M. Bishop,
“Development of a Software Security Assessment
Instrument to Reduce Software Security Risk” Proc.
of the Tenth IEEE International Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises, Boston, MA, pp 144-149.

[12] D. Gilliam, J. Powell, J. Kelly, M. Bishop,
“Reducing Software Security Risk Through an
Integrated Approach”, IEEE Goddard 26th Annual
Software Engineering Workshop.

[6] J. R. Callahan, S. M. Easterbrook and T. L.
Montgomery, “Generating Test Oracles via Model
Checking,” NASA/WVU Software Research Lab,
Fairmont, WV, Technical Report # NASA-NV-98-
015, 1998.

http://cve.mitre.org

