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Abstract 

Vulnerabilities in concurrent sojiware systems and 
sojiware applications render an otherwise safe and 
network secure environment unsde and insecure. Any 
sofiware system or application added to a safdsecure 
environment that has exploitable security vulnerabilities 
a#iects the security and sdety ofthe whole environment. 
Thus, a system can be compromised easily ifthe system or 
application software on it, or on a linked system, has 
vulnerabilities. Therefore, it is critical that software be 
peepom such vulnerabiIities. 

Vulnerabilities in software arise from a number of 
development factors; but these vulnerabilities can 
generally be traced to poor software development 
practices, new modes of network attach, mis- 
coqfigurations, and dangerous interaction between 
systems. 

A formal software assessment methodology can aid 
in providing a greater level of assurance that software is 
not exposed to vulnerabilities as a result of defective 
software requirements and designs or exposures due to 
compIexity and integration with other applications that 
are developed in parallel or subsequently added to the 
system. 

This paper presents a portion of an overall 
research project on the generation of a sofiare security 
assessment instrument to aid developers in assessing and 
assuring the security of software in the development and 
maintenance lvecycles. This portion focuses on modeling 
requirements and early lifecycle designs to discover 
vulnerabilities that resultpom interaction between system 
components that are either under development in a new 
system or proposed as additions to an existing system or 
environment. There are early indications that a new 
approach, the Flexible Modeling Framework (FMF) has 
promise in the areas of network security as well as other 
critical areas such as system sajety. Information about 
the overall research eflort regarding network security is 
available at: httv://securitv.ivl. nasa.gov/rssr. 
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1. Introduction 

The National Aeronautics and Space 
Administration (NASA) has funded the Jet 
Propulsion Lab to develop a software security 
assessment for use in the software development and 
maintenance life cycle. One major goal of the effort 
is the use of a formal analytical approach, such as 
Model Checking (MC), for integrating security into 
existing and emerging practices for developing high 
quality software and computer systems. 

Software on networked computer systems must 
be free from security vulnerabilities. Vulnerabilities 
in software arise f?om a number of development 
factors that can generally be traced to poor software 
development practices, new modes of attacks in the 
network security arena, mis-configurations, and 
unsafe interaction between systems and/or their 
components. An otherwise safe and secure system 
can be compromised easily if the system or 
application software on it, or on a linked system, has 
vulnerabilities. This presents a verification problem 
for networked systems because the builders of a 
system often have little or no knowledgehontrol 
over systems that will be liked to it if it makes use of 
network connectivity. The most extreme case is 
when a system is connected to the Internet. MC 
offers a means for examining component interaction 
in relation to critical system properties such as 
safety and security. [ 1,9,10,11,12] 

Currently, the use of MC as means of 
verification to mitigate these vulnerabilities during 
the software development and maintenance life 
cycle suffers from some practical limitations. 
Among these limitations are: 
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For example, to reconstruct the knowledge 
contained in Figure 4 in light of a modification to C1 
only C1 itself and the combination of C1 and C2 
(And-1) need to be re-verified. The results of re- 
verifying the remaining componentdcombination 
would only replicate the results of the previous set 
of verifications. This represent a savings in that 6 
verifications (Cl, C2, C3, C4, And-1, And-2) were 
needed to originally capture the knowledge in 
Figure 4 but only 2 re-verifications were needed to 
reconstruct the knowledge in light of the 
modification. 

This will result in a decreased cycle time for 
verification of model updates thus improving the 
timeliness of the formal verification results. 
Further, as more is lamed about the system’s 
specific manner of accomplishing its task(s) the 
affected model components can be: 

0 Modified to reflect the more detailed 
approaches developed during the design 
phase to maintain model fidelity in a timely 
manner. 

0 Segmented into its own series of 
components when the complexity of the 
high level component begins to exhibit state 
space explosion problems. This allows 
logical grouping of related components 
while still allowing incrementally inclusion 
of parts of complex logical system entity in 
combinations where the state space is 
reaching MC thresholds. 

There are numerous instances in which one must 
view a system or set of systems at a very abstract 
level before examining one or more parts in greater 
detail. In the security arena one will view a large 
network system from an extremely high level where 
protocols must be understood and systems within it 
are arbitrary connected entities. When one is 
building a system that will interact with a network 
the focus on that particular system entity becomes 
more detailed but the remainder of the network is 
still viewed very abstractly. The levels of detail in 
which a component/entity is modeled and examined 
is referred to as its resolution throughout this paper. 
As specific interaction with other systems are 
defined the resolution of those systems necessarily 
becomes somewhat more detailed to deal with issues 
such as: 

0 How will that system handle transmission 
from the system being developed? 

0 In what way will that system respond to the 
system under development? 

Further, the system under development will be 
decomposed at a high level in to various network 
aware and non-network aware component, which 
will be subsequently view with varying levels of 
resolution. (See Section 2.3) Consider a system 
where network aware components such as 
application and login functions are interacting with 
non-network aware components such as routines on 
a local printer. At this level there are network aware 
components on the computer system, components 
making up the network environment, and 
components making up the local printer. (See Figure 
5 )  At this level it is appears reasonable to believe 
that the computer system is interacting with the 
network and thus should be responsible for security. 
The printer is local (i.e. non-network aware) thus 
need not concem itself with network security and 
may rely wholly on the computer system in that 
regard. In the next section we will examine variable 
resolution of components and continue the example 
to illustrate that the above suppositions may not be 
true. 

I I Network Environment 

- 
Computer System 

p-l Fl ... F l  

Local Printer 

Figure 5: Examle System - High Level 



23. Non-Uniform Component Resolution 
In the FMF approach components are viewed 

not only as a matrix of combinable components (See 
Figure 6) created at a given level of detail 
(resolution) but also as a 3-dimential space of 
models where by component versions of different 
resolutions may be selected to manage state space 
explosion. Therefore, the tolerable state space 
maybe spread across several components in varying 
amounts, which together from a state space that is 
feasible for MC. The approach of building model 
components, as opposed to a single model, allows 
localized modification and enhancement of model 
behavior and detail in order to examine subsets of 
the system at various non-uniform levels of 
resolution. The FMF component methodology 
provides the ability to make tradeoffs in resolution 
between components while maintain the size of the 
state space within tolerable limits. The process of 
enhancing model components as more is learned 
about the system results in a series of component 
versions. When archived for later use they provide a 
readily usable facility for producing component 
combinations with non-uniform resolutions. This is 
done by selecting the components for the 
combination and then specifLing what version 
(resolution) of the component to use. For example 
(See Figure 6) assume that: 

Cn is a component at its lowest resolution 
(least detail) 
Cn.3 is a component model with the highest 
resolution (greatest detail). 
All 9 components taken together at the 
Cn.1 level of resolution is just under the 
state space feasibility limit. 

With the above assumptions, the ability to 
investigate one component in detail (Cn.3 level) is 
facilitated by accepting lower levels of resolution 
(Cn level) in other components. Raising the 
resolution in one component increases the state 
space. Conversely, lowering resolution decreases 
the state space. Therefore, to gain maximum 
benefits from the available memory resources the 
resolution is increased until the threshold is almost 
reached. By remaining just below 100% available 
memory usage, property verification over model 
component versions whose average resolution is the 
highest feasible. The analyst may then continue to 
make tradeoffs to probe various parts of the system 

in greater detail by increasing resolution on one 
component and decreasing it on others. 

Uniform Resolution 

w C7.3 C8.3 C9.3 

Non-Uniform Resolution 

Figure 6: Component Resolution 

Recall the example from Figure 5 where a 
printer with no network capability need not concern 
itself with security issues. To gain a higher 
confidence that this is the case the components 
within each system (Network, Computer, Printer) 
must be examined at a higher resolution. It is 
apparent that examination of all components at a 
high level of resolution is an infeasible task for MC 
with reasonable memory constraints. Thus a process 
is undertaken to gradually: 

Increase the “resolution” on the computer 
system and the printer 
Lower the “resolution” on the network 
environment. 
Lower resolution or rule out some of the 
non-interacting components within the 
computer and printer. 

This process can reveal useful connections to 
between the printer components and those 
components on the computer system that are 
security critical. (See Figure 7) While printer 
components like CPl, do not directly interact with 
the network it now may be possible for them to 



later be strategically combined for system 
verification purposes. This correlates the modeling 
function with modern software engineering and 
architecture practices whereby a system is divided 
into major parts, and subsequently into smaller 
detailed parts, and then integrated to build up a 
software system. An initial series of simple 
components can be built when few operational 
specifics are known about the system. However, 
these components can be combined and verified for 
consistency with properties of interest such as 
software security properties. 

Figure 4: Comnonent Relationsh ins 

The approach of compositional verification used 
in the FMF seeks to verify properties over individual 
model components and then over strategic 
combinations of them. The goals of this approach 
are to: 1) infer verification results over systems that 
are otherwise too large and complex for model 
checking from results of strategic subsets 
(combinations) while minimizing false reports of 
defects; 2) retain verification results from individual 
components and component combinations to 
increase the efficiency of subsequent verification 
attempts in light of modifications to a component. 

The FMF verification process begins determining 
which model components are safe and unsafe with 
respect to the property in question. Then, the 
strategic combination process seeks to build up 
relationships between components. Figure 4 shows 
an example where the components C1 and C3 are 
safe with respect to some security property while the 
states Cz and C4 are unsafe. Relationships between 
CI and C2 as well as C3 and C4 are shown. Since C2 

is individually unsafe, C1 is individually safe and the 
combination C1 and C2 is safe, C1 is said to mitigate 
C2 with respect to the property in question. 
Conversely C3 is safe and C4 is unsafe and the 
combination of the two components is unsafe. In 
this case C4 is said to undermine C3. 

Network security professionals and builders of 
network systems are faced with an overwhelming 
task of either maintaining or defending against many 
systems to which their system is or will be linked. 

These linked systems are often heterogeneous 
with respect to the software application sets that are 
running on them. Many will run various 
Combinations and subsets of common software 
applications along with less common specialized 
applications. The FMF seeks to retain information 
about dangerous combinations of software. Further, 
the framework provides a means by which new 
combinations encountered by network professionals 
can be formed from existing models and quickly 
evaluated for their potential effects on linked 
systems. 

It bears noting that two components that are 
labeled individually safe may produce and unsafe 
security condition when combined and vise versa. 
Similar to testing of an implementation, two 
modules that have undergone unit testing and passed 
may later produce problems during integration 
testing. These problems may be traced to such 
phenomena as timing issues resulting in race 
conditions or unexpected interactions due to the 
absence of reasonableness checks on input values 
for one or both modules. The FMF allows 
investigation of such possibilities at an earlier point 
in the life cycle before an implementation exists. 

Maintaining the network of relationships for each 
property will allow future verifications of the 
property to be accomplished by noting the 
relationships that were used to make earlier 
verification inferences and only re-verifying the 
relationships affected by a component change or 
addition as the system evolves. When changes are 
made to the model only the affected components 
need be modified and re-verified. By retaining 
knowledge h m  previous verifications, the effort of 
re-verifying properties may be reduced significantly 
due to the fact that only the changed components, 
and combinations including one or more of them, 
need be re-verified. 



errors are found in the early lifecycle sample 
test specification can be preserved for use by the 
PBT to provide traceability verification. 

Model based verification techniques, such as 
Model Checking, are not without drawbacks. 
Among them is the inability to model a system with 
a high degree of fidelity in a timely manner while 
the system evolves. This is particularly problematic 
in the earliest stage of development such as concept, 
requirements and high-level design when the system 
definition is most volatile. MC's lack of agility 
limits an analyst's ability to maintain an up to date 
model and minimize the latency between the 
introduction of errors and their discovery. 

Process P2 Process P 1 

Figure 1: Concurrent Processes 

A limitation specific to model checking is the 
state space explosion problem. [lo] Similar to the 
growth of the operational space mentioned above, 
the state space that a model checker must search to 
verify properties grows at an exponential rate as the 
model becomes more detailed. As shown in figures 
1 through 3 the state space grows at a rate of m" 
where m is the range of possible values a variable 
may assume and n is the number of variables in the 
model. Despite the use of modeling techniques such 
as abstraction and homomorphic reduction it is 
infeasible to veri@ many software systems in their 
entirety though model checking beyond those that 
are either complex and very small or moderate in 
size and very simplistic. 

Processors P1, P2 

... 

Figure 2: Interleaving Concurrent Processes 

Figure 3: State Space 

2.2. The Flexible Modeling Framework 
An innovative verification approach that employs 

model checking as its core technology is offered as a 
means to bring software security issues under formal 
control early in the life cycle while mitigating the 
drawbacks discussed above. The Flexible Modeling 
Framework (FMF) seeks to address the problem 
formal verification of larger system by a divide and 
conquer approach. First verifying a property over 
portions of the system. Then, incrementally 
inferring the results over larger subsets of the entire 
system. As such the FMF is a: 

System for building models in a component 
based manner to cope with system evolution 
in a timely manner 
Compositional verification approach to delay 
the effects of state space explosion and allow 
property verification results to be examined 
with respect to larger, complex models. 

Modeling in a component-based manner involves 
the building of a series of small models, which will 



e Limits on the size and complexity of 
systems that may benefit from MC 
given reasonable computer memory 
resources. 

0 Difficulty in rapid development, 
modification and verification of models 
in a timely manner during the early life 
cycle when systems tend to change and 
evolve quickly. 

The MC approach discussed in this paper seeks 
to develop a tool-supported methodology to support 
the model-based verification of software systems in 
an agile manner that can cope with memory resource 
constraints to a reasonable degree. Specifically, the 
Flexible Modeling Framework (FMF) offers a 
formal MC approach for engineering safety andor 
network security into software systems and 
application throughout the software development 
and maintenance life cycles. 

Model based verification uses precise 
abstractions. It offers the ability to verify security 
properties over system models early in the life cycle 
- before an implementation exists. MC can 
effectively identify security anomalies that have not 
been discovered as a result of a known network 
security attack. These new anomalies may then be 
added to a stored Vulnerability Matrix (vmatrix). 
(See Section 3.2) Anomalies that are found in early 
lifecycle phases through the examination of 
abstractions (models) can be preserved and later 
passed on to additional technologies such as the 
Property Based Tester (PBT) [1,3,4,5] for 
verification at the code level. (See Section 3.2) 

Assessments of high profile NASA systems 
believed to be vulnerable to network security attacks 
will provide a metric to determine the effectiveness 
of these activities and prototypes. The security 
assessment instrument will be verified on a 
JPLLNASA Class A Flight Project to assess the 
approach and the viability of the FMF for assuring 
the security of software on critical networked 
systems. 

2. Model-Based Security Specification and 
Verification 

Model based specification and verification make 
use of discrete finite models to verify compliance of 
the model to desired properties. In the cases 

mentioned here, software safety and network 
security properties. Network security andor safety 
properties often focus on characteristics that are 
manifested though the operation of multiple 
software components and systems operating 
concurrently with or without an attacking process. 
The concurrent nature of the systems results in an 
operational space that is too large to veri@ system 
properties effectively through traditional testing of 
the implementation. Further, vulnerabilities 
introduced in the early phases of the development 
lifecycle are costly to remove in later phases when 
an implementation is being tested. This results in 
the addition of cumbersome workarounds and 
“patches” to repair the software system which 
themselves could introduce new vulnerabilities. 
Model Based Specification offers the opportunity to 
perform verification of properties early in the life 
cycle, providing a clearer understanding of the 
vulnerability issues within the system before an 
implementation exists. 

The FMF approach is currently under 
development and shows promise for early life cycle 
detection of security vulnerabilities. The approach 
may be generalized and/or tailored in future work 
for applicability to non-security domains such as 
safety. 

2.1. Model Checking 
Model checkers automatically explore all paths 

in a finite state space from a given start state in a 
computational tree. The objective is to verify 
system properties over all possible scenarios within 
a model. Model Checkers differ from more 
traditional heavyweight formal techniques in that: 

Model checkers are operational as opposed to 
deductive. Deductive approaches, while offering 
a higher level of completeness and are more 
resilient in the face of larger systems, are 
difficult to apply and require a great deal of 
expertise. 
Model checkers provide counter examples when 
properties are violated. The counter examples 
may be used to determine the cause of the 
property violation and as representative traces 
for test case generation. [6,7] 
Their goal is oriented toward finding errors as 
opposed to proving correctness since the model 
is an abstraction of the actual system. Where 



interact with otherwise secure computer system 
components in a manner that renders them unsecure. 

An attack similar to this scenario above has 
been seen before. The attack managed to exploit 
interactions between computer system components 
to send a message to the printer with additional data 
embedded in it. At a higher level it appears that a 
component on a computer system is sending a 
routine message to a local (non-networked) printer - 
a harmless interaction. Thus, the message is not 
scrutinized by the computer system because it is a 
non-network aware activity. Therefore the message 
is allowed to proceed to a seemingly non-critical 
area (the local printer). However because the printer 
did not address network security concerns either it 
failed to identify that its normal responses back to 
the computer system were actually giving an 
unauthorized outside party root access to the 
computer system. From there the attacker had 
access to the entire network. 

Network Environment 

I Computer System 

Figure 7: Example System - Lower Level 

3. FMF Integration with other Technologies 

The FMF is intended as a verification 
technolo= that can stand-alone but may also be 
combined with other technologies to afford 
maximum benefit and usability. [ 1 1,121 

3.1. State chart Representations and Tools 
FMF makes use of an internal state chart 
representation as its means of representing models. 
This representation currently encompasses a subset 
of possible state notations. Elements initially 
supported by the approach are those that are 
generally interpreted in a consistent manner in most 
state chart representations. The currently supported 
notation features are: 

0 Conditional and unconditional transition 
between states. 

0 State definitions that include abstract 
assignment of system variable state values. 

0 Finite arithmetic assignment to a state’s 
variable values. For example, (a = @+I) 
mod IO) is fmite while (a = a +I) is not 
because the number of visits to the state in a 
possible execution is generally unknown at 
the time of verification. 

The use of state chart representations, as 
opposed to modeling languages such as Promela 
[lo], provide the opportunity to employ existing 
robust state chart specification systems as an 
interface to FMF tool support capabilities. 

3.2. Other Verification Systems 
In the network security arena an integrated 

approach, which includes the FMF as a model-based 
verification element, for assessing security 
vulnerabilities is being explored. The other parts of 
the Security Assessment Instrument are PBT and the 
VMatrix. 

PBT is an approach that allows the analyst to 
systematically test an implementation for adherence 
to various properties by making use of a support tool 
called the Tester’s Assistant (TA). [ 1,3,11,12] First, 
the property is expressed in a form that the TA 
accepts as input. Then, an analyst uses the PBT to 
systematically insert assertions that are pertinent to 
the property into an implementation and exercises 
the implementation. The objective is to discover 
traces through the implementation that produce a 
non-confoming scenario. 
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Firmre 8: Technologv Inteaation 

The Vmatrix, examines vulnerabilities, 
exposures and the methods used to exploit them. 
Vulnerabilities and exposures are listed along with 
their Common Vulnerabilities and Exposures (CVE) 
listing. [2] The VMatrix includes: 

0 A brief summary and a description of the 
vulnerability or exposure. 

0 The affected software or operating system. 
0 The means necessary to detect the 

vulnerability or exposure and the fix or 
method for protecting against the exploit. 
Catalogue information, keywords, and other 
related information as available, regarding 
the vulnerability or exposure. 

The individual parts of the Security Assessment 
Instrument can be used separately or in combination 
(See Figure 8) to provide the additional benefits of: 

0 Reduced rework to identify security 
properties. 

0 Increased confidence in the system through 
verification at multiple times during the 
development and maintenance lifecycle 
One tool is capable of verifLing the input 
and output of other tools in the network 
security instrument. 
Finding additional network security attacks 
yet to be seen in the wild (attacks that have 
not yet been seen outside of a laboratory 
environment) and test for their viability and 
seventy. 

0 

0 

0 

In addition to developing an abstract model of a 
system and performing MC verification, properties 
of interest must be defined. The identification of 
specific system critical properties that warrant 
formal verification is a non-trivial task. Integration 
of the FMF with the VMatrix addresses this problem 
for the network security arena. The VMatrix [ 1,2] 
provides a searchable knowledge base from which 
properties may be extrapolated for use with the FMF 
in the role of a MC function within the instrument. 
This knowledge base can also accommodate the 
discovery of new network security attacks not yet 
seen in the wild that may be discovered through MC 
techniques. 

The network security instrument also provides a 
Property based testing tool [1,2,4] that verifies 
properties against the actual implementation of a 
software system. These properties are also extracted 
from the VMatrix. Used with the FMF, PBT can 
provide verification of a system implementation's 
fidelity to the model(s) of early lifecycle artifacts 
(Requirements and Designs). 

4. Conclusion 

Reducing the number of vulnerabilities in 
software systems is critical in computer systems that 
pedorm safety critical functions andor make use of 
network connectivity. The use of formal approaches 
such as MC enhances the ability of developers and 
analysts to discover vulnerabilities arising through 
unsafe interactions between systems and/or 
otherwise safe software components. The FMF 
approach provides the benefits derived from MC 
while mitigating limitations posed by system size 
and complexity as well as requirements and design 
volatility during the early lifecycle phases. The FMF 
attempts to capitalize on the benefits of existing 
technologies in a manner that maximizes usability 
and minimizes duplication of effort between 
approaches. 

Integrating software security and d e t y  into 
existing and emerging practices is critical for 
developing high quality software. The Flexible 
Modezing Frumework (FMF) offers a formal 
approach achieving such integration throughout the 
software development and maintenance life cycles. 
The approach seeks to maximize these benefits by 
attempting to integrate with, as opposed to 



replacing, existing verification technologies. While 
work on this research effort is ongoing, the approach 
has shown considerable promise and gamered 
interest from JPL projects as a means’of increasing 
confidence in the safety and security of software 
during development. 
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