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Abstract 
Planning for the optimal attainment of requirements is 

an important early lifecycle activity. However, such 
planning is dificult when dealing with competing 
requirements, limited resources, and the incompleteness of 
information available at requirements time. 

A novel approach to requirements optimization is 
described. A requirements interaction model is executed to 
randomly sample the space of options. This produces a 
large amount of data, which is then condensed by a 
summarization tool. The result is a small list of critical 
decisions (i.e., those most influential in leading towards 
the desired optimum). This focuses human experts’ 
attention on a relatively few decisions and makes them 
aware of major alternatives. 

This approach is iterative. Each iteration allows 
experts to select *om among the major alternatives. In 
successive iterations the execution and summarization 
modules are run again, but each time further constrained 
by the decisions made in previous iteration. In the case 
study shown here, out of 99 yes/no decisions 
(approximately I do possibilities), five iterations were 
suflcient to find and make the 30 key ones. 

1. Introduction 
Projects that seek to develop complex systems are 

almost always constrained by limited resources. Resources 
include development resources (e.g., schedule, budgets, 
availability of personnel) and product resources (e.g., 
memory, bandwidth, power). These constraints usually 
mean that only a subset of all the desired requirements can 
be attained. Competitive pressures drive projects to seek 
optimality goals within this constrained space - i.e. to fmd 
the most requirements for a given set of resources, the 
least resources to attain a given set of requirements, or 
some combination of these goals. 

The importance of this issue has been recognized and 
studied by the requirements community in recent years. 
For example: 
0 Karlsson & Ryan developed a “cost-value’’ approach 

to prioritizing requirements [7]. At the heart of their 
approach is a cost-value diagram, which plots each 
requirement’s relative value and implementation cost, 
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facilitating the selection of an appropriate subset of 
requirements. They employ the Analytic Hierarchy 
Process to arrive at the relative value and cost figures 
for each requirement 
The WinWin project [ 11 supports multiple 
stakeholders to identify conflicts between their 
respective evaluations of requirements, and to locate 
feasible solutions that are mutually satisfactory 
combinations of requirements. A recent experience 
report [6] indicates that the automated aids they have 
built to support this approach are successful at 
identifying more issues and options than would be 
possible by a manual treatment alone. 
Influence diagrams (a form of Bayesian nets) are used 
in [2] to compute the utility of requirements that are 
candidates for inclusion in the next release of a piece 
of software. This enables decision makers to take into 
account a wide variety of factors contributing to the 
feasibility of including each requirement. 

The approaches cited above essentially assign or 
calculate cost and benefit figures for individual 
requirements. The situation becomes more complex if 
there are significant interactions among requirements, for 
example, if two requirements can be achieved by sharing 
the same solutions to sub-problems then the cost of 
attaining both of them may be significantly less than the 
sum of their individual costs. Representing and reasoning 
about requirements interaction is another emergent theme 
within the requirements engineering community. 
Robinson et al’s survey [ 161 terms this “Requirements 
Interaction Management”, while van Lamsweerde’s mini- 
tutorial [ 181 refers to “Goal-Oriented Requirements 
Engineering”. Work in this area is founded upon building 
models of how requirements interrelate - how they 
decompose, how they are implemented, how they support 
or contradict one another, etc. 

Combining these two themes suggests the following 
approach: 

Navigate through alternatives in the cost- 
benefit tradeofl space, where the cost-benefit 
jigures for the various alternatives are derived 
*om requirements interaction models. 

This paper describes tools to support such navigation. 
The distinguishing features of our approach are the type 
and size of the models we explore. The methods cited 
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above apply to specific kinds of models and require 
specialized tool support. Also, they typically are applied 
to small models’. In contrast, this paper explores an 
approach suited to the exploration of large models of any 
type. For example, in the case study shown below, some 
99 risk mitigation actions were being debated; Le. 299 
= 1 030 possible sets of decisions. Further, our exploration 
tools impose minimal restrictions on the type of model 
being explored. We just assume that there exists an 
executable requirements interaction model and a 
summarization tool. The former can be of any form, as 
long as it can be used to generate cost and benefit figures 
from some model of how requirements interact. The latter 
is used to extract summary conclusions from multiple 
examples of decisions, each with its cost and benefit 
figures. These summary conclusions guide the human 
experts to focus on the relatively few critical decision 
alternatives, and select accordingly. As they do so, they 
can bring to bear additional knowledge that they might not 
have included within the requirements interaction model 
( e g ,  knowledge of incompatibilities between certain 
decisions) to help them make their selection. 

Our approach is to follow the iterative cycle of 
execution, summarization and decision shown in Figure 1. 
The requirements interaction model, built by humans, is 
used to grow the space of options, the computer culls the 
less useful of these, and the experts make the final 
decisions. This can be a fruitful partnership. Focusing 
experts attention on the relatively small number of most 

I-- examples 

ation C........,.-.- 

critical 
decision 
selection 

critical 
decision 
alternatives 

1. P = Y e s  1. X = N o  
2. Q = Y e s  or 2. Y =Yes 
3. R = N o  3. Z = Y e s  

Human Experts 

Figure 1. Execution/SummarizationlDecision Cycle 

critical decision alternatives makes much more effective 
use of their skill and knowledge. Repeating this cycle 

For example, the reported case studies of the soft goal 
approach of Mylopoulos and Chung [14, 31 explore a 
small number of major alternatives; e.g., between one of 
four major architectural styles for the NFR-Assistant Case 
tool itself [17]. 

1 

allows the iterative approach to the end goal of a decision 
that is optimal (or near optimal) within the space of 
feasible decisions. 

We demonstrate the feasibility of this approach 
instantiated on a non-trivial requirements interaction 
model developed and used at NASA. Sections 2 and 3 
describe the requirements interaction model and the 
summarization tool (respectively) used in our case study. 
Section 4 shows how the interaction model can be linked 
to the summarization tool. Section 5 presents our large- 
scale pilot study that studied a space of 99 possible risk 
mitigations. In five iterations of the execution / 
summarization / decision cycle we were able to converge 
to a desirable region within the costhenefit space. This is 
illustrated in Figure 2 where “Benefit” is a measure of 
requirements attainment and “Cost” is sum of the costs of 
applying the selected mitigations. Executing the 
interaction model on randomly selected mitigations 
generates a sampling of the entire space of solutions (the 
widely dispersed black points in Figure 2). Executing the 
interaction model on the mitigation selection 
recommended by our iterative process generates a 
sampling of the optimized space of solutions (the dense 
region of white points in Figure 2). The external validity 
and applicability of this result is discussed in Section 6. 

Figure 2. Initial [scattered black points) 
and Final (dense white points] --- 
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2. DDP: A requirements interaction model 
This section introduces the requirements interaction 

model. We describe the modeling framework, and then the 
characteristics of a real-world model built within this 
framework that we used for our large-scale pilot study. 

Our requirements interaction modeling framework is 
the NASA-developed Defect Detection and Prevention 
(DDP) process and tool for risk assessment, planning and 
management [4]. DDP deals with requirements, risks and 
risk mitigations. Risks are quantitatively related to 
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requirements, to indicate how much each risk, should it 
occur, impacts each requirement. Mitigations are 
quantitatively related to risks, to indicate how effectively 
each mitigation, should it be applied, reduces each risk. A 
set of mitigations achieves benefits (requirements are met 
because the risks that impact them are reduced by the 
selected mitigations), but incurs costs (the sum total cost 
of performing those mitigations). The main purpose of 
DDP is to facilitate the judicious selection of a set of 
mitigations, attaining requirements in a cost-effective 
manner. DDP has the capability to represent and reason 
simultaneously with a multitude of mitigations, and their 
effectiveness at reducing multiple risks. In actual usage, 
DDP application sessions have dealt with up to 150 each 
of requirements, risks and mitigations. 

Manual exploration of the space of possible mitigation 
alternatives is a daunting challenge. Complications stem 
from the interactions within the DDP model - a given risk 
may impact multiple requirements, and a given 
requirement may be impacted by multiple risks. Likewise, 
a given risk may be addressed by multiple mitigations, and 
a given mitigation may address multiple risks. A modest 
cost mitigation that addresses a serious risk might seem 
promising, but if that risk will be adequately addressed by 
other mitigations that will need to be chosen anyway 
(primarily to address other risks), then the seemingly 
promising mitigation may be superfluous. The scale of the 
models with which we deal compounds the difficulty of 
manual exploration. For example, if there were 100 
mitigations to choose from, the number of possible 
selections would be 2lo0 (approximately 1 030). Automation 
capable of finding optimal, or near-optimal, solutions is 
needed. In actual DDP applications (to hardware, 
software, and hardware-software combinations) the lack of 
any such automated capability has forced human users to 
manually pick their suite of risk mitigations. Various 
graphical presentations of information, automatically 
computed cost and risk figures, etc., guide them as they do 
so [5], but it has remained a primarily manual activity. 
This has several obvious drawbacks - manual selection 
takes time, and may well fail to find anything near an 
optimal solution. 

For our pilot study, we used a real-world model 
developed in the DDP framework. We describe its salient 
characteristics next. 

Domain: the study that gave rise to this data was an 
evaluation of a promising piece of research-quality 
spacecraft technology. The purpose of the evaluation was 
to identify the risks that would arise in maturing this 
technology to flight readiness, and what mitigations could 
be identified to address those risks in a cost-effective 
manner. The proprietary nature of the technology 
precludes discussion of the specifics, which are in any 
case irrelevant to the focus of this paper. 

Scale: NASA experts used DDP to build a network 

connecting 32 requirements, 69 risks and 99 mitigations. 
The network contains numerous interaction details: 352 
times, the experts commented on how mitigations could 
reduce risks; 440 times on how risk could damage 
requirements. 

Raw “Benefit” Data: the data that populated the DDP 
model was the combination of inputs from multiple 
experts - mission scientists who understood the science 
requirements driving the need for the technology (e.g., 
performance metria), spacecraft engineers who 
understood the context in which the technology would 
have to function (e.g., temperature, radiation), subsystem 
engineers who understood the challenges of matching the 
novel technology with the various other spacecraft 
components (e.g., power supply). 

Raw “Cost” Data: At the time of the model 
construction, the group of experts did not assign cost 
figures to the individual mitigations. They performed their 
study using DDP to compute the “benefit” side of the 
equation (i.e., selected mitigations that would reduce risks 
and thereby lead to attainment of the requirements), and 
mentally kept track of the cost implications of mitigation 
selections. In part this was due to the lack of capabilities 
in DDP at that time to make use of costs. An expert 
knowledgeable of the expense of the various mitigations 
added cost figures later. It is this augmented dataset that 
we used for the collaborative study. 

3. TAR2 treatment learning: a 
summarization tool 

Classical machine learning (e.g. C4.5 [15]) can be 
applied to learn implications between attribute ranges and 
results (eg) :  

X>1 and Y<O implies class=highCostProject 
However, if applied to a non-trivial requirements 

interaction model a large number of such implications 
result. Some form of summarization is required. One way 
to do this is to study pairs of rules that lead to different 
results and reporting the changes to attribute ranges that 
change ( e g )  a highCostProject into a 
lowcostproject. TARZAN implemented such a search 
as a post-processor to C4.5 [ 101. TAR2 performs the same 
search directly, without needing C4.5 [l 13. Starting with 
examples, TAR2 finds range settings that are highly 
associated with some “good” outcome (e.g 
lowcostproject.) and not highly associated with some 
“bad” autcome (e.g. highCos tproject). TAR2 outputs 
implications of the form (e.g.) 

X>1 and Y<O implies less “bad“ and more 
“good “ 
where “less” and “more” are measures of the change in the 
frequency of “good” and “bad” before and after applying 
x>1 and Y < O  to the examples. The set of attribute 
ranges (X>1 and Y<O) is called a “treatment”. Such 
treatments are the constraints that TAR2 is proposing on 
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future actions in order to increase the chances of less 
“bad” and more “good”. 

TAR2 runs in two passes. In the first pass, a set of 
promising attribute ranges is discovered. To find such a 
“promising range”, the association and negative 
association with “good”/ “bad” behavior (respectively) is 
computed for all ranges. A promising range scores 
outstandingly high on this scale (for more details, see 
[ 1 I]). In the second pass, all subsets of these promising 
attribute ranges are tested. Clearly, the second pass is 
exponential on the number of outstandingly promising 
ranges. In practice (e.g. the case study discussed below), 
the number of such outstandingly promising ranges is 
small enough to be tractable. 

This method has demonstrated its utility in a number of 
widely differing domains, including the COCOMO risk 
model [lo], and CMM level 2 [12]. In those case studies, 
the summarizations offered by TAR2 were surprisingly 
succinct. TAR2 could explore megabytes of data to return 
a single rule describing the least action that most changes 
the frequency of “good” and “bad” outcomes. 

4. Combining the requirements interaction 

A requirements interaction model constructed within 
DDP takes as input a set of decisions - the selection of 
risk mitigations to perform. It computes the cost and 
benefit - cost is the cost of performing the selected risk 
mitigations, and benefit is the sum total of requirements 
attained. 

T A U ,  the summarization tool, takes as input a set of 
examples, each of which comprises a set of attribute 
values and an overall score. Attribute values must be 
drawn from finite, enumerable ranges (e&, 1,2,3,4), as 
must scores. Furthermore, the possible values for score 
must be ordered. It outputs a set of alternative critical 
decision sets. Each critical decision set comprises ranges 
for a subset of the attribute values. 

We interface these tools as follows: 
Each DDP mitigation becomes a separate TAR2 
attribute, which can take on one of two values: “Y” or 
“N’. Y“ corresponds to the mitigation being 
performed, “N” otherwise. 
For a given suite of mitigations to be performed, DDP 
automatically computes both a cost figure and a 
benefit figure. This computation is based on domain 
data. These two must be combined into a single score 
from an ordered set of possible such scores. 
TAR2 requires a set of examples. To generate such a 

model with the summarization tool 

examples, returns several “treatments” - critical 
decision alternatives. Recall that a treatment consists 
of a subset of attribute range settings. In DDP terms, 
these can be mitigations to perform (TAR2 sets an 
attribute to the value “Y”) and mitigations to not 
perform (TAR2 sets an attribute to the value “N’). 
Intuitively, the ones it recommends to perform are 
those essential to achieving a good score, while the 
ones it recommends to not perform are those 
detrimental to a good score. 

0 These critical decision altematives are shown to the 
human experts. This gives them the opportunity to 
bring to bear additional knowledge that may not be 
encoded in the DDP model. For example, they may 
recognize an incompatibility between two of the 
mitigations that one of the altematives recommends. 
They would therefore choose one of the other 
alternatives that TAR2 had recommended. They make 
a selection of one of the alternatives. 

0 The process is repeated, but with the mitigations set 
according to the critical decision selection made by the 
experts. Each iteration thus sets more and more of the 
mitigations, each one to either be performed or not. 

5. Pilot Study 

5.1. First iterative cycle 

5.1.1 Generation of examples from requirements 
interaction model (DDP). The initial step of the pilot 
study involved generating a large number (30,000) of 
examples, sufficiently many for TAR2 to work with to 
reach stable conclusions. The black points on Figure 2 
show the costhenefit distribution of 10,000 of these 
30,000 examples (if all 30,000 are plotted, the area 
becomes so densely filled that it is hard to discem the 
varying densities of points). 

The pilot study needed an optimization target, e.g., 
maximize benefit for a given cost level. In the DDP 
model, cost is the dollar cost of performing the selected 
mitigations, while benefit is a measure of risk avoidance. 
The benefit scale is in arbitrary units of requirements 
weighting. The plot of initial values shows that at a cost of 
approximately $600,000 there are examples that attain 
near-maximal benefit of approximately 250. DDP 
applications typically seek near-maximal reduction of risk 
(Le., near maximal benefit). This suggested an interesting 
and relevant challenge would be to seek to optimize at or 
around the cost limit of $600,000. 

set, run DDP repeatedly, eachtime randomly selecting 5.1.2 Combining cost and benefit values into a 
mitigations to perform. In order to reach stable single score. DDP generates numerical cost and benefit 
conclusions over large numbers of attributes, it may be values; TAR2 requires that these be combined to yield a 
necessary to generate a fairly large set of examples. single score, which can take on values from an 

The target zone of costs at or below $600,000 
T A U ,  when provided a sufficiently large set of enumeratedrange. 
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motivated a partitioning of cost value into four regions: 
below $600,000 (most desirable region); $600,000 - 
$649,999; $650,000 - $699,999; at or above $700,000 
(least desirable region). Benefits were partitioned by 
subdividing the data values into quartiles, Le., putting the 
lowest 25% of the benefit figures into the lowest benefit 
range, the next 25% into the next, etc. Ranking the 16 
possible pairings of cost and benefit then yielded a 
combined score of "goodness". During the pilot study we 
employed a mixture of two ways of combining cost and 
benefit scores. The first placed a greater priority on 
maximizing benefit, as shown in Table 1. Thus an 
example whose cost falls into the lowest cost range (i.e., 
up to $600,000) and highest benefit range (top 25 
percentile) would achieve the maximum possible score of 
16. Next best, a score of 15, would go to examples in the 
2"d cost range ($600,000 - $649,999) but still in the top 25 
percentile benefit range, . . . the worst score, 1, is reserved 
for an example that falls into the highest cost, lowest 
benefit ranges. This ranking drove TAR2 towards high- 
benefit solutions. 

I Table 1 - benefit-prioritized score combination of I 
score COST RANGE 

4 2 
The second combination scheme, shown in Table 2, 

Table 2 - balanced score combination of cost & 
henefit 

stuck a more balanced combination of cost and benefit. 

1 1 1  2 1 3  4 

(low) (high) 
4(high) I6 14 11 7 
3 15 12 8 4 
2 13 9 5 2 

score 

(low) (high) 
4(high) I6 14 11 7 
3 IS 12 8 4 

COST RANGE 

1 (low) I 3 1 I 
The initial dataset was processed to assign the 

appropriate one of these scores to each of its 30,000 
examples, so as to prepare it for TAW. 

5.1.3 Summarization using TAR2 treatment 
learning. TAR2 was applied to the processed dataset, and 
directed to look for treatment sets of increasingly large 
size. 6 was the maximum size for which it successfully 
terminated. The best treatment identified three mitigations 
to constrain to be performed, and three mitigations to 
constrain to not be performed. 

To visualize the effect, DDP was then used to generate 
another large set of examples, with the mitigations in the 

TAR2 treatment constrained as indicated, and the 
remaining mitigations selected or not at random. Figures 3 
and 4 (next page) show the distribution of the examples 
generated in the initial state, and the examples generated 
after the first iteration (10,000 examples are plotted for 
both cases). The improvements are dramatic - examples 
with low benefits (below 150) and/or high costs (over 
$900,000) have vanished. 

5.2. Successive iterations 
In successive iterations, TAR2 was applied to the set of 

examples that emerged from executing the model on the 
best treatment found in the previous iteration. If this were 
a real-life application of the approach, after each of the 
iterations the experts would be presented the results so far, 
and asked to make their selection from among the multiple 
treatment sets proffered by TAR2. 

The entire series is shown in Figures 3 through 8, on 
the next page. From the treatment sets it discovered, the 
best was selected, the model was additionally constrained 
by its recommendations, and another large set of examples 
generated. The stopping point, after the 5" iteration, is 
shown in Figure 8. 

5.3. Stopping point 
Following the 5" iteration, the variation among the 

benefit figures is relatively small. Recall that the 
underlying DDP data is human experts' estimates, and so 
the cost and benefit figures that DDP computes from these 
should not be misinterpreted to have high precision. Thus 
having reached the point where the benefit figures are so 
tightly clustered, it is appropriate to stop. A good strategy 
at this point is to pick one of the lower cost points along 
the upper border. 

5.4. Sensitivity 
Our requirements interaction model was populated with 

experts' estimates of the impact of risks on requirements, 
and effectiveness of mitigations at inhibiting risks. This 
has been the norm for DDP applications, targeted at 
problems for which historical data has rarely been 
available [4]. A question that often arises is to what extent 
the results suggested by DDP depend on the correctness of 
the experts' estimates. The availability of the TAR2 
treatment learner gives us a way to study this issue. 

We picked one of the near-optimal solutions that 
emerged from the iterations described above. This 
consisted of a set of mitigations to be applied. We then 
applied the same executiodsummarization process upon 
this solution, but instead of varying which mitigations 
were selected for application while holding the model 
constant, we varied the model while holding the selection 
of mitigations constant. Each such experiment yielded a 
pair cost and benefit figures, but the cost figure remained 
constant (namely the sum total of the costs of the selected 
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mitigations). The effects of varying the model showed up 
as changes to the computed benefit. 

We generated 100,000 such randomly generated model 
variations, and fed these into TAR2 to search for model 
values (i.e., experts’ estimates) that would lead to the 
greatest divergence from the originally computed benefit 
figure. TAR2 was unable to find any that made a 
significant difference. Based on TAR2’s success in a 
number of domains, we are confident that critical settings 
must not exist, otherwise TAR2 would have found them. 
This strongly suggests that the recommendations found by 
our iterative process are not overly sensitive to variations 
in the experts’ options contained within the model. That is, 
the recommendations would seem to be based on the 
aggregate effect of a large number of estimates, rather 
than critically dependant upon just a small subset of them. 

6. Discussion 
We have described a novel iterative process of 

execution, summarization and decision, the purpose of 
which is to converge towards near-optimal attainment of 
requirements in large-scale requirements models. 

We claim to have demonstrated its success in our pilot 
study of a real-world instance of a requirements 
interaction model. In this section we defend this claim, 
and consider its broader implications, in particular, its 
applicability to other models. 

6.1. Success on pilot study 
The key claim we are making about the pilot study is 

that it showed success at arriving at a near-optimal 
attainment of requirements. 

Without a baseline system to compare with, this claim 
cannot be rigorously defended. However, consider how 
the space of cost-benefits shrank as we iteratively applied 
TAR2. Afier five iterations, TAR2 had succeeded in 
identifying settings that demonstrably yield a compact set 
of points concentrated at the upper end of the benefit 
range, and at cost levels compatible with our initial goal of 
$600,000. Indeed, the experiments revealed that almost as 
much benefit can be attained at somewhat lower costs, 
around the $500,000 level. It is interesting to note that the 
combination of the treatments discovered by the five 
rounds of TAR2 constrained only one-third of the 
mitigations (30 out of 99), and yet these serve to narrow 
the spread of costhenefit values significantly. The 
randomly generated mitigation suites at the start had 
benefits & costs dispersed widely across the 50 - 260 & 
$300,000 - $1,200,000 ranges. The stopping point has 
benefits & costs concentrated predominantly within the 
240 - 265 & $450,000 - $650,000 ranges. 

We are further encouraged by the sensitivity 
experiment, which indicated the near optimal solutions 
were robust with respect to the model inputs. 

Figure 3. Initial state I 300 1 

1 0 - I  I 1 I 
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6.2. Novelty of the approach 
The approach offers a way to converge to near-optimal 

attainment of requirements in large-scale requirements 
models. Furthermore, it identifies critical decision points 
along the way, giving human experts the opportunity to 
inject additional knowledge and guidance. 

Potential altemative methods to our approach include 
traditional numeric optimization methods (e&, linear 
programming) or computational intelligence methods 
( e g ,  fuzzy logic, genetic algorithms, neural nets). 
However, numerical optimization cannot be applied here 
since DDP theories are discrete, not continuous. Numeric 
optimization is better suited to continuous theories 
containing smooth functions. Numeric methods are 
unsuited to discrete theories containing sudden “cliffs” 
(e.g. when a mitigation is activated). 

Preliminary studies with a heuristic search technique 
based on use of genetic algorithms indicate it may provide 
a fast way of arriving at near-optimal solutions. However, 
each such solution takes the form of applyldon’t apply 
decisions for every mitigation, from which there is no 
apparent way to ascertain which of these are the most 
critical decisions. They drawbacks are lack of opportunity 
for experts to inject their additional knowledge into the 
process, and lack of focus on the critical decision points. 

6.3. Wider applicability 
We believe our iterative process to have applicability to 

a wide range of requirements interaction models. Our 
process requires that: 

1. The requirements interaction model be 
“executable”, that is, can be randomly exercised to 
generate a set of examples, for each of which the 
model computes the measures of interest. 

2. Those measures be combinable into a single 
measure that can take on values in a discrete, 
ordered range. 

3. Summarization be capable of finding critical 
settings that lead towards the more desirable end of 
the ordered range. 

In our case, it was easy to arrange to have DDP 
generate large numbers of examples, the only drawback 
being the time it took DDP to do so. At present, the DDP 
implementation on the large-scale pilot study’s dataset 
takes on the order of 3 hours to generate a set of 10,000 
examples (running on a lGHz machine with 1Gigabyte of 
RAM). The vast majority of the time goes into calculating 
the cost and benefit figures. One way around this would be 
to employ parallel processing, setting multiple CPUs the 
task of constructing examples by randomly selecting 
mitigations, and computing the cost and benefit figures for 
each example. We showed a simple scheme for abstracting 
them into ranges from which a single composite measure 
could be derived. These are easy steps for a wide range of 

models. 
Note that the summarization component needs only 

examples generated by the requirements model, not an 
understanding of the model itsee Thus as the formalism 
used to capture requirements interaction models evolves, 
no change to the summarization component is required. 
We have been elaborating the DDP model, and so will be 
able to take advantage of this. It also means that the 
overall approach should work even if very different 
requirements interaction models are substituted. 

We employed TAR2 for summarization. Given the lack 
of apparent alternatives, our belief in the wider 
applicability of this approach thus hinges on our belief in 
the wider applicability of T A N .  We address two areas of 
particular concern with this: 

Is random generation of examples an adequate 
method for exploring a model? A theoretical drawback 
with any random search strategy is that such random 
exploration can miss significant parts of the space of 
options. A huge body of work testifies to the merits of 
random search, even for very hard tasks such as searching 
an argument space. For example, random search methods 
are very effective for scheduling problems and can solve 
hard and larger planning problems many times faster than 
traditional methods such as a systematic Davis-Putnam 
procedure [8]. A similar result was offered in [9] (this 
result is discussed below). That is, a random selection of 
mitigation strategies can be an adequate method for 
exploring an argument space. 

Will the techniques described here scale to larger 
models? Our technique relies heavily on the TAR2 
treatment leaner. Hence, our method won’t scale unless 
TAR2 also scales. Recall from section 3 that the algorithm 
explores all subsets of the “outstandingly promising 
attribute ranges”; i.e. those ranges that have most impact 
on changing the behavior of a system. Unless we can 
guarantee that the number of outstanding ranges is small, 
then this exponential search is intractable and our methods 
won’t scale. The “funnel theory” of [9] strongly suggests 
that only a small number of outstanding ranges will exist. 
The original funnel study tested relative effectiveness of 
exploring alllsome resolutions to alVsome arguments 
(where the “some” where randomly selected). In millions 
of runs, they observed a “funnel effect”; i.e. in most 
arguments, there exists a small set of key decisions that 
control all other decisions. [ 131 argued for the theoretical 
external validity of the funnel effect. They explored how 
random search might select between small funnels and 
large funnels. Based on known distributions of reaching 
part of a software system, they concluded that a random 
search is millions of times more likely to use small 
funnels. In systems with small funnels, a small number of 
decisions would be used frequently (Le. those in the 
funnel). Those decisions would appear as outstandingly 
promising ranges, of which there would be only a few, and 
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hence TAR2’s exponential search would be tractable. 

7. Conclusions 
We have described a novel approach to converging 

upon near-optimal attainment of requirements in large- 
scale requirements models. The evidence of the pilot study 
we conducted, together with our arguments for its wider 
applicability, suggest that this approach is worthy of 
further investigation. Now that we have this capability in 
place, we plan to make use of it to assist in fhture 
applications of our requirements modeling process. We 
also hope that this will stimulate additional interest in the 
use of this overall approach. 
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