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Abstract 
We present a model of cerebellar cortex that combines two types of learning: feedforward 

predictive association based on local Hebbian-type learning between granule cell ascending branch and 
parallel fiber inputs, and reinforcement learning with feedback error correction based on climbing fiber 
activity. The model is motivated by recent physiological and anatomical evidence and has more 
computational capacity than previous functional models of cerebellum. To demonstrate the model's 
utility, we simulated the control of a simple virtual arm. The model successfully learned to control the 
timing of release for the arm during a target-throwing task. 

Introduction 
We present a model of cerebellar cortex that performs dynamic state estimation and prediction. 

This function is similar to that described by Keeler [14] for Marr-Albus-Kanerva type cerebellar 
networks [16, 1, 131. However, the learning mechanisms have been modified to reflect more recent 
neurophysiological and anatomical evidence. The model acts as a sparse distributed associative memory: 
information from sensory, proprioceptive and cortical inputs (such as motor commands) provides the 
context from which to learn to predict future states. Cerebellar output can then be used for several 
purposes: to adaptively filter future input, to improve detection of novel or unexpected events, to 
modulate motor outputs, or to provide feedback for motor learning. 

Our goal is not to faithfully replicate the cerebellum but rather to build a model inspired by its 
circuitry and function. The model incorporates two types of learning potentially supported by the 
cerebellar cortex. Purkinje cells (PC) have long been known to receive inputs from two major sources: 
parallel fibers (PF) and climbing fibers (CF) (Fig. I) .  Simultaneous activation of PF and CF input has 
been shown to cause long-term depression (LTD) at the PF-PC synapse [12]. Recently, however, 
evidence has been growing for a third major input to PCs [lo] - granule cell axons make multiple 
synapses onto their overlying PCs as they ascend through the PC layer to the molecular layer (gray in 
Fig. 1). We have proposed that this ascending branch (AB) input induces postsynaptic activity that 
causes facilitation when coupled with local PF input [2]; Le., AB-PF correlations lead to Hebbian 
learning including long-term potentiation (LTP) at the PC-PF synapse. This allows the learning in 
cerebellar cortex to be much more flexible through a combination of LTP and LTD. The model 
presented here combines AB-PF LTP for feedforward state prediction with CF LTD for feedback error 
correction and reinforcement learning. 

We tested the model in a computer simulation to perform dynamic state estimation on a virtual 
dynamic arm, with the goal to learn to throw a ball at a target. Given a particular arm trajectory, the 
critical variable for an accurate throw is the timing of release [ 1 I]. Over multiple trials the model 
learned to track and predict the arm trajectory, to modulate the trajectory for different target heights, and 
to release the ball at an appropriate point within the trajectory. 
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Methods 
The cerebellar model network and virtual dynamic arm were simulated in MATLAB (The Mathworks, 
Natick, MA) on a Power Mac G4. 

Cerebellar Model 
The cerebellar model consisted of 6 PC neurons with 4280 PF, 6 AB and 6 CF inputs (Fig. 2). 

All units were adaptive threshold spiking neurons, adapted from the model neurons described in detail 
by Nelson and Paulin [17]. 3680 of the PF inputs were excitatory, representing GC activity that sampled 
from the state variables on the mossy fibers. The receptive field of each GC was chosen as a radial basis 
function of two of the state variables shown in Figure 2. The receptive fields overlapped and covered the 
input space uniformly. The remaining 600 PF inputs were inhibitory, representing stellate cells present 
in the molecular layer with coarser receptive fields. Other inhibitory interneurons (Golgi and basket 
cells) were not modeled. Each PC received one AB input representing the summed input of many 
granule cells carrying information about the particular input variable to be learned. Correlations between 
the AB input and PF inputs caused Hebbian-like learning at the PF-PC synapse, resulting in feedforward 
predictive association during the throwing trial. After the trial ended, the throw result was evaluated and 
a binary error signal returned on the CF input for feedback error correction to the PC assigned to learn 
the release time. If the CF indicated an error, then all training for that trial was forgotten. 

Arm Model 
To test our learning methods, we simulated the dynamics of a single link arm (i.e., a catapult) 

given the task of throwing a ball at a target. The arm was modeled using the Denavit-Hartenberg 
representation of multi-link manipulators [7], with functions from a public domain Robotics Toolbox for 
MATLAB [6] to implement forward and inverse kinematics and dynamics. The virtual arm was 0.5 m 
long and had a mass of 1 kg. The desired arm trajectory (shown in Fig. 3A) and an appropriate torque 
function were given by equations of the form: 

8 = 90 + 90 tanh(at) 

T =  m ~ % / 3  + mg~cos(0)/2 
where m is the mass of the arm, L the arm length, and time t ranges from -250 to 250 msec. The slope 
a of the arm angle function allows the torque gain and maximum endpoint velocity to be controlled with 
a single variable. Here we have neglected the mass of the object to be thrown, but it can be added into 
the equations with no loss of generality. 

Training 
Training consisted of multiple trials of swinging the arm through the chosen trajectory while the 

network performed Hebbian associative learning of spatial and temporal correlations among its inputs. 
For each trial, the release time was chosen from the spike probability distribution learned over previous 
trials by the release PC. At the moment of release, the ball was assumed to have the position and 
velocity of the end effector, and then to follow a ballistic parabolic path influenced only by gravity. A 
target 0.5 m in diameter was simulated at a distance of 5 m, centered at a height of 3 m (see Fig. 4). The 
accuracy of the throw was then evaluated. If the throw landed within a window around the target 
(initially quite large), the learning was accepted and the target window was shrunk for the subsequent 
trials. If the target window was missed, it was expanded by 10% and the CF for the release command PC 
provided a simple error signal indicating a miss. This caused the network to forget all learning from each 
trial with inaccurate results. Thus only learning during accurate throws was permitted to persist. 

The throw evaluation also included another heuristic signal that indicated when the throw was 
too high. After each such trial the torque gain was simply lowered by 5%, both reducing the power and 
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moving the arm trajectory through a larger good region of state space (see Figure 3B). In this case the 
motor modulation is simple and does not need to be represented within the cerebellar circuit, but in more 
complex multi-link systems such changes in gain would also have to be learned. 

Results 
Because the single link dynamic arm has only one degree of freedom (DOF), the target-throwing 

problem can be readily visualized in a state space representation for angle and angular velocity. Figure 
3B shows the region of state space (light gray) within which a release will result in the object hitting the 
target. The left heavy line in Fig. 3B indicates the original trajectory of the arm through this space. 
When training first starts, the release time is chosen randomly from a uniform distribution over the 
course of this trajectory, and so the throw results are randomly dispersed (Fig. 4A). As training 
progressed, good throws (ones which hit the target) caused learning that modified the distribution of 
release time probabilities for the ensuing trials, gradually concentrating the releases closer to the good 
region of state space (Fig. 4C,D). The final distribution of PF synaptic weights for the release PC (Fig. 
3D) results in synaptic currents (Fig. 3C) into the PC that concentrate its output firing during the 
window of good states for this trajectory (Figs. 3E, 4B). As discussed in Methods, the arm trajectory 
was modified after several throws that went higher than the target, resulting in a lower torque gain so 
that the final trajectory passed through the widest extent of the good region of state space (right heavy 
line in Fig. 3B). This makes the throw less dependent on precise timing, (Le. the throw accuracy is more 
robust), because the window of good release times increased from less than 4 msec to 16 msec. 
However, the changes in trajectory also slowed the overall learning because the network had to relearn 
the new trajectory whenever it shifted. 

Discussion 
This modeling effort was a proof-of-concept demonstration of the utility of combining the two 

types of learning inspired by the cerebellar circuitry. Our model has not yet been optimized for learning 
conditions or speed, and was applied to a relatively simple system. The real power of the cerebellum 
model may only be realized if the model is efficiently scaled up to higher DOF problems. We hope to 
build on these types of models to help explain cerebellar function and for use in robotic applications. 

Cerebellar learning 
In 1969 David Marr published his revolutionary theory of cerebellar cortex [ 161, combining 

cerebellar physiology and anatomy with the machine learning methods of his day. Marr’s foremost 
prediction was that PF synapses onto PCs would undergo Hebbian facilitation when presynaptic PF 
activity was coincident with postsynaptic PC depolarization induced by CF input. Subsequent 
physiological experiments, however, showed that simultaneous stimulation of PF and CF inputs causes 
LTD but not LTP [12]. Alternative Marr-like models therefore used LTD to confer learning capability to 
cerebellar cortex [ l ]  and by 1989, LTD was widely regarded as the “memory element for cerebellar 
motor learning” [ 121. 

We have proposed [2] that the AB input, ignored in most previous models of cerebellar function, 
can play the role envisioned by Marr. AB inputs may induce postsynaptic activity in the PC dendrite, 
that, when correlated with local PF input, leads to Hebbian learning or LTP at the PC-PF synapse. Llinas 
[ 151 first suggested that ABS might make functionally significant contacts with overlying PC dendrites. 
Bower and Woolston [5]  then demonstrated that the ABS of neighboring granule cells provide a 
synchronous (and therefore relatively large) excitatory input to their overlying PC. Recent anatomical 
studies [9, 101 of the AB pathway indicate that AB-PC synapses are morphologically distinct from the 
PF-PC synapses. We believe that PF inputs adjacent to AB inputs are well situated to modulate or gate 
the AB response, creating ideal conditions for Hebbian-like facilitation or LTP. Neurophysiological 
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evidence for PF-PC LTP has been reported in studies of synaptic plasticity in cerebellar slice 
preparations (e.g., see [8]). Finally, learning to predict sensory input has already been demonstrated in 
cerebellar-like structures in fish [4]. In a similar manner the cerebellar circuitry can function as the 
associative memory Marr postulated, by learning patterns of sensory and motor inputs presented by the 
mossy fiber pathway as they are projected onto the AB and PF inputs. Notably, this is very 
complementary to the LTD result since the CF pathway is now free to assume other roles, including the 
representation of error signals. By assigning the AB and PFs to feedforward state prediction, and CF 
input to feedback error correction or change of states, our model can both account for more of the 
experimental evidence and has increased learning capacity compared to models which ignore the AB 
input pathway. As described in [2], this new learning hypothesis can be tested with in vivo experiments. 

Dynamic state estimation and control 
Given a mechanical system with particular dynamics and motor command inputs, three functions 

are useful to learn: (1) to estimate and predict trajectories through state space, i.e., modeling the system 
dynamics, (2) to learn the “good” region of state space in which an action decision (in our example, the 
release time) results in a desired goal (e.g., hitting the target), and (3) to modulate motor commands to 
redirect the trajectory to increase or optimize its intersection with the “good” regions of the state space. 
The cerebellum has been implicated in all three functions. Here we have been motivated by release 
timing in human throwing experiments (1 l), although this may be more aptly described as learning to 
release at the appropriate state during the trajectory, not the time. The set of good states can be reached 
along many different trajectories. In particular, variability and non-idealities such as noise in the sensed 
feedback or in actuator output will vary the timing over multiple trials. We are now investigating the 
model’s response to noise and multiple trajectories, as well as scaling up the system to higher 
dimensional multiple-link arms. The cerebellar circuit is given the task to generate the best estimate of 
the dynamic state variables by combining the current measurements and the implicit learned model of 
system dynamics, and to learn appropriate regions of the space to initiate actions. 
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Figures 

Figure 1. The cerebellar functional microcircuit, adapted from [ 131 with the addition of ascending 
branch inputs from the granule cell axons (gray). 
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Figure 2. Schematic of the model network. 
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Figure 3. A. Arm trajectory variables: angle (black), angular velocity/lO (dark gray) and 
acceleration/100 (light gray). The torque gain was lowered whenever the throw result was higher than 
the target (10 times over 1000 trials). B. State space representation of throwing task for the single link 
arm shown in Fig. 4A and B. The gray region indicates where a release would result in a throw hitting 
the target. The lines indicate initial and final arm trajectories from before and after training. C. Net 
synaptic currents into the release PC after training. D. Relative distribution of synaptic weights after 
training, for excitatory (black) and inhibitory (gray) inputs. E. Output firing rate of the release PC over a 
throwing trial, during training (gray) and after training (black). F. Other PCs learned to estimate state 
variables and predict the torque function necessary to generate the trajectory. 
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Figure 4. A. Throws at 2 msec intervals before training. The random release time results in throws 
uniformly distributed (only those near target plotted here). B. Throws at 2 msec intervals after training. 
The throws are concentrated nearer to the target and there is a wider window of good release times. C. 
Height of the object when it hits the wall versus trial number. D. Histogram of same data in C. 
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