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LOW-THRUST ORBIT TRANSFER AROUND MINOR PLANETS 

Jon A. Sims,* Gregory J. Whiffen,* Paul A. Finlayson, * and 
Anastassios E. Petropoulos* 

Several methods for determining the characteristics of low-thrust transfers 
around minor planets are examined and compared. The methods range from 
simple analytic approximations to sophisticated optimization. The AV required 
for a given transfer generally decreases with increasing flight time. Allowing a 
relatively short coasting period can significantly decrease the required AV over a 
minimum time (continuous thrust) transfer. A simple analytic approximation 
provides a good estimate of the AV, and a Hohmann-type transfer, which can be 
achieved in a reasonable time, establishes a lower bound. 

INTRODUCTION 

The use of solar electric propulsion (SEP) has been shown to be highly effective 
for transferring from Earth to rendezvous with main-belt asteroids.'72 Once the spacecraft 
is captured at the asteroid, the SEP system can be used to transfer between orbits. In this 
paper we present analyses of these types of transfers between coplanar, circular orbits 
using low-thrust propulsion systems such as SEP. We assume an inverse square gravity 
field. 

Exact, analytic solutions to this orbit transfer problem not being available, we 
examine various analytic approximations as well as numerical methods. Approximate 
expressions for multi-revolution, constant-thrust-acceleration trajectories, starting from 
circular orbits, have been known since the 1 9 5 0 ~ . ~ , ~  In the formidable body of research 
conducted in the following two decades, constant-thrust analogues were ~btained,~ and 
averaging and multiple-time-scale methods were employed to model analytically the 
oscillations of the osculating orbit  element^.^'^ Exact analytic results are known for 
various special cases which require variable thrust (often of realizable maximum 

However, the above results are only imperfectly applicable to the 
problem of circle-to-circle transfers using constant thrust. Some of these, along with 
other approximations and simple numerical control laws, are discussed below. 

A small collection of analytic results based on optimization methods is also 
available. Again using averaging, partly analytic results are known for the problem of 
propellant-optimal, constant-power, variable-thrust orbit transfer. 12,13 More recently, 
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exact planar solutions were obtained for propellant-optimal transfer between ellipses 
using engines whose thrust and I,, are variable and bounded but not on the bounds.I4 

A large number of works have focused on numerical solutions to the problem of 
optimal orbit transfer; a small sampling is presented in Refs. 15-20. Kechichian,” for 
example, uses a shooting method, with coordinates chosen so as to permit faster 
numerical integration, to solve the two-point boundary value problem which arises from a 
calculus of variations formulation of the optimization problem. Geffroy and Epenoy16 
use averaging techniques and the calculus of variations, solving the resulting problem by 
continuation and other methods. Betts” applies collocation techniques to the full 
dynamics of the problem, subsequently using sequential quadratic programming. 
Kluever and Oleson2’ also use a direct method, but use averaged dynamics to avoid the 
large size of the full-dynamics problem. Whiffen and Sims2’ describe software based on 
static/dynamic control which can use a full n-body gravity model to optimize orbit 
transfers either alone or as part of larger problems involving a succession of several 
primary gravitational centers. This software, which is used in the present paper, works 
very well when the number of revolutions required for the orbit transfer is small. 
Computation times become increasingly longer as the number of revolutions increases. 
However, for the problem of orbit transfer around a small body, thrust levels are often 
high enough so that only a few revolutions are required. 

APPROACH 

We examine several methods for determining the characteristics (e.g., AV and 
flight time) of low-thrust transfers around relatively large asteroids, or minor planets. 

Analytic Techniques 

We examine several analytic techniques. These include shape-based methods, 
where the spacecraft is assumed to follow a predetermined shape, such as the logarithmic 
spiral or the exponential sinusoid, l1 and o timization-based methods affording analytic 
solutions. For example, Lawden’s spiral:’ although now known to be sub-optimal, can 
provide some qualitative insights thanks to its simple analytic form. Also examined are 
analytic solutions to the minimum-fuel problem based on averaging  technique^.'^,'^ All 
of these analytic techniques reduce to the following equation as an estimate for the AV 
required to transfer between coplanar, circular orbits in the limit of constant infinitesimal 
thrust over an infinite flight time: 

where Vcl is the velocity in the lower circular orbit and Vc2 is the velocity in the higher 
circular orbit. For finite flight times, Lawden’s spiral, the logarithmic spiral and the 
exponential sinusoid all require two impulsive AVs, once to leave the circular orbit and 
enjoin the transfer arc, and once to depart from the transfer arc and enjoin the target 
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circular orbit. As the number of revolutions decreases, the impulsive AVs for the former 
two shapes are increasingly non-tangential and increasingly larger than the impulsive 
AVs for the exponential sinusoid. For the exponential sinusoid, the sum of the impulsive 
AVs and the AV needed on the transfer arc is increasingly less than the AV of Eq. (l), the 
fewer the revolutions, while for the other two shapes this sum is increasingly greater than 
the AV of Eq. (1). For all three shapes, however, the required thrust acceleration varies 
significantly over the course of the transfer, and reaches increasingly large maximum 
values as the number of revolutions decreases. Thus, while the exponential sinusoid 
provides the best performance of the three shapes, some interpretation is required to 
apply the results to the case of constant thrust. For example, the average thrust over the 
transfer may be constrained to lie below the available thrust from the engines. 

Hohmunn Transfer. Another point of comparison that we use is the well-known 
Hohmann transfer that assumes impulsive AVs. If infinite transfer time were allowed, the 
Hohmann AV itself could be attained for the transfer. For example, to enter a higher 
circular orbit, a series of infinitesimal impulses at periapse could be used to raise apoapse 
to the desired circular radius, whereupon another series of impulses would be applied at 
apoapse to circularize the orbit. A much less efficient way of using an infinite transfer 
time is to transfer repeatedly between a succession of circular orbits using infinitesimal 
Hohmann transfers. The total AV required in this case is given by Eq. (1)  also. 

Simple Control - Thrust Aligned with Velocity 

Another method uses a simple control scheme in which the thrust is aligned with 
the velocity relative to the minor planet. The two-body equations of motion are 
integrated with the thrusting included as an additional force. 

Infinitesimal continuous thrust along the velocity vector results in a trajectory that 
remains differentially close to circular throughout the circle-to-circle transfer. However, 
for any finite continuous thrust, the trajectory does not remain circular, so continuous 
thrusting strictly along the velocity vector cannot be used to transfer from one circular 
orbit to another. Finding a simple thrusting strategy for a nearly continuous low-thrust 
transfer between circular orbits was challenging. The strategy described here is very 
simple, employing constant thrusting along the velocity vector, except for one short (less 
than one orbit) coasting period at some point during the transfer. The short coast enables 
this simple strategy to result in a circular orbit at the end of the transfer. The orbits must 
be coplanar and the phasing in the final orbit (relative to the initial orbit) is not free. 
There may, however, be multiple solutions from which to choose, each having different 
final orbit phasing. Each of the multiple solutions has a different total AV requirement 
(although the differences have been very small in the test cases we have examined). In 
general, we choose the one with the lowest AV, although we could also choose the one 
with the shortest total flight time. 
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Given an initial and final circular orbit radius, the problem is to find the duration 
of the first thrusting period (At,), the duration of the required coasting period, and the 
duration of the second thrusting period (At2) to transfer from a state on the initial orbit to 
a state on the final orbit. The solution technique involves integrating forward in time 
fiom the initial orbit and backward in time from the final orbit. Integrating forward in 
time with thrusting fiom a state on the initial orbit for a time interval At1 results in an 
intermediate orbit with a particular semimajor axis and eccentricity. Integrating 
backward in time from a state on the final orbit for a time interval -At2, we arrive at an 
intermediate orbit with the same semimajor axis and eccentricity. Except for a rotation, 
these represent the same orbit. The rotation problem is solved by simply rotating the 
spacecraft position in orbit for the start of the backward integration (this is the reason 
why the phasing in the final orbit is not free). With this rotation, the shape and 
orientation of the intermediate orbits for the forward and backward integrations are 
identical, so they are the same orbit. This orbit is called the transition orbit. But, the 
transition orbit still has a phasing problem. For the forward integration, the spacecraft 
enters the transition orbit with a particular mean anomaly (position in the orbit). For the 
backward integration, the spacecraft enters the transition orbit at a different mean 
anomaly, which (since integration is backwards) is actually the mean anomaly of the 
spacecraft at the point where it must leave the transition orbit. The total thrusting time is 
At1 + At2. The total transfer time is the total thrusting time plus the time spent coasting 
on the transition orbit (less than one revolution). Using an iterative method, we solve for 
Atl, Atz, the parameters of the transition orbit, and the required coast time in that orbit. 
There may be several solutions as illustrated in Figure 1. 
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Figure 1 Eccentricity versus Semimajor Axis for Thrusting Aligned with Velocity 
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There is one final complication. For the backward integration, the final mass 
(which is required for the integration) is not known. The value must be guessed and then 
compared at the transition orbit with the spacecraft mass from the forward integration. 
These two values must be equal. By iteration the correct final mass is found. 

Numerical Optimization 

The third primary method is an application of the optimization algorithm called 
Static/Dynamic Control (SDC).21 SDC is a general, gradient-based optimization method 
that is distinct from both parameter optimization and the calculus of variations. 
Trajectories are integrated with a multi-body force model and engine operation is 
modeled as finite burns. 

SDC is a new, general optimization algorithm that was derived to address a class 
of problems with the same structure as low-thrust optimization. SDC best fits into the 
direct method category. However, unlike other direct methods, the explicit time 
dependence of the optimization problem is not removed by parameterization. The SDC 
optimization algorithm is a form of optimal control. The SDC optimization algorithm is 
based in part on the Hamilton, Bellman, Jacobi dynamic programming equation.23 
Unlike traditional differential dynamic programming methods, SDC is constructed to 
solve highly nonlinear and non-convex problems with a dual dynamic and parametric 
structure. Optimal solutions generated by SDC satisfL both the necessary and sufficient 
conditions of optimality. 

RESULTS 

We present detailed results from two primary cases. The first case has a thrust 
acceleration to gravitational acceleration (T/W) ratio ranging from 0.3 to 0.07. In the 
second case, T/W ranges from 0.02 to 0.004. 

Case 1 

The first case is a transfer between circular orbits from 3000 km radius to 1500 
km radius around a body with a gravitational constant of 1.016 km3/s2. The initial 
spacecraft mass is 1550 kg, and the engine parameters correspond to an NSTAR 30 cm 
ion thru~te?~ as demonstrated on Deep Space 1 : thrust = 0.05225 N and mass flow rate = 
1 . 7 5 1 ~ 1 0 ~  kg/s. 

A plot of propellant mass versus flight time using SDC is presented in Figure 2. 
The minimum flight time achievable is 4.3 1 days and requires 0.65 kg of propellant. The 
corresponding trajectory is shown in Figure 3. The thrust direction (represented by the 
arrows) is significantly different than the velocity direction for most of the transfer. In 
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Figure 2 we see that the propellant mass can be significantly reduced with only a small 
increase in flight time. A trajectory with a 5-day flight time is shown in Figure 4. The 
thrust direction is aligned very closely with the velocity direction in this case. As we 
increase the flight time, the performance approaches that corresponding to a Hohmann 
transfer. The trajectory with a 30-day flight time is shown in Figure 5. The periapse is 
reduced to 1500 km with two short duration thrust arcs, and the apoapse is then reduced 
with three thrust arcs, approximating a Hohmann transfer in stages. The line labeled 
“Analytic” in Figure 2 corresponds to Eq. (1). Using the method in which we align the 
thrust with the velocity has only one solution in this case and results in a propellant mass 
slightly less than the analytic value. 

Case 2 

The second case that we examined in detail has a T/W an order of magnitude less 
than in Case 1 and requires several revolutions (> 10) in order to complete the transfer. 
We transfer from a 2500 km circular orbit to a 982 km circular orbit around a body with a 
gravitational constant of 20.016 km3/s2. The initial spacecraft mass is 690.55 kg, and the 
thrust and mass flow rate are the same as in Case 1. 

A plot of propellant mass versus flight time is shown in Figure 6. The minimum 
flight time is 8.27 days, requiring 1.25 1 kg of propellant. The required propellant 
decreases quickly as the flight time increases to about 8.6 days and then slowly 
approaches the value corresponding to the Hohmann transfer. Figure 7 compares the 
minimum flight time trajectory to a trajectory with a flight time of 8.56 days (near where 
the performance starts to level off). Note the thrust angle with respect to the velocity for 
the two cases. The minimum flight time objective results in significant thrusting 
inefficiency compared to a slightly longer flight time solution. Avoiding this 
performance penalty requires only a short (relative to total flight time) coast. The 
performance penalty is indicated by a significant component of the thrust being 
perpendicular to the velocity. The penalty is worse for fewer revolutions as we saw in 
Case 1. 

The line labeled “Analytic” in Figure 6 corresponds to Eq. (1). Using the method 
in which we align the thrust with the velocity has three solutions in this case (see Figure 
1). The one with the minimum total AV is represented in Figure 6. 
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Figure 2 Propellant Mass versus Flight Time for Transfer between Circular Orbits 
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Figure 3 Minimum Time Transfer between Circular Orbits 
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Figure 5 30-Day Transfer between Circular Orbits 
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Figure 6 Propellant Mass versus Flight Time for Transfer between Circular Orbits 
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CONCLUSION 

We have examined several different methods for determining the characteristics 
of low-thrust transfers around minor planets. The methods range from simple analytic 
approximations to sophisticated optimization. 

The AV required for a given transfer generally decreases with increasing flight 
time. Allowing a relatively short coasting period can significantly decrease the required 
AV over a minimum time (continuous thrust) transfer. A simple analytic approximation 
provides a good estimate of the AV, and a Hohmann-type transfer, which can be achieved 
in a reasonable time, establishes a lower bound. 
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