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ABSTRACT 

We study the effect of distributed elasticity on the dynamics of an orbiting formation. The paradigm considered in the 
paper, namely two bodies connected by one spring in formation with a separated free-flying body, represents a prototype 
system for a variety of possible problems. Conclusions are derived on the system’s stability, as well as on the system 
performance under closed-loop control. 
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RIGID VEHICLE 

DEFORMABLE VEHICLE 

Figure 1: Formation Configurations considered in this paper. 

1 Introduction 

In this paper we try to answer the following question: what is the effect of the assumption that one of the bodies of an 
orbiting formation is deformable? Several research papers considering the dynamics and control of envisioned formation 
flying missions assume that all the elements of the formation can be modeled as rigid bodies. Most of the applications 
considered so far are using essentially rigid spacecraft (no flexibility involved, except for what may arise from large 
heatshields) for space interferometry (Terrestrial Planet Finder, StarLight). In parallel, formation flying applications using 
tethers have also been proposed in the past (see2) and more recently (SPECS). In the case of tethers, a long deformable 
element is present between one or more bodies of the formation. One may assume that, in a not too far future, formation 
flying missions will be proposed which will consider deformable surfaces such as large reflective shell-like elements, or 
combinations of tether-connected spacecraft with free-flying spacecraft. In this paper, we would like to consider the 
problem of formation dynamics and control when part of the formation contains distributed flexibility. This may be the 
case of a tethered connected pair of vehicles, which are required to maintain a formation with a separated free-flying 
spacecraft in a different orbit. The model considered in this paper can be thought as a prototype model because it also 
may provide basic information on the dynamics and control behavior of formations in which a portion of its elements are 
part of a deformable body (inflatable reflector, flexible antenna). Some of these concepts are depicted in ??. 

Previous related work on the virtual truss associated with a formation, which will be used later on in this paper, can 
be found in2 and,3 and' represents one of the first reports of a study on the effects of interaction between orbital dynamics 
and spacecraft flexibility. 

First, we describe the assumptions of the model. Second, we develop the equations of motion of the prototype system. 
Third, we generalize the equations to the case of relative motions. Fourth, we study the stability using the concept of 
the virtual truss associated with a formation. Finally, the conclusions summarize the results of the paper, and outline 
directions of future research. 

2 Assumptions of Model 

The following assumptions are used in this paper: 

0 The formation is composed of three bodies represented by point masses. 
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Figure 2: One elastic dumbell orbiting in formation with a rigid spacecraft. 

0 Two of the bodies are connected by one viscoelastic spring (dumbbel, tether). 

0 The orbit is circular. 

0 The formation dynamics is described (and numerically integrated) with respect to the Orbiting Reference name,  to 
be described next. 

We follow Figure 2. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) 
orbiting reference frame (x, y, Z) = 3 0 ~ ~  of origin OORF which rotates with mean motion $2 and orbital radius b. A 
general type of orbit can be accommodated in the model, as the orbital geometry at the initial time is defined in terms of its 
six orbital elements, and the orbital dynamics equation for point OORF is propagated forward in time under the influence 
of the gravitational field of the primary (Earth for LEO, Sun for Deep Space applications) and of the Earth as third body 
perturbation effect. The origin of this frame coincides with the initial position of the center of mass of the system, and the 
coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The inertial 
reference frame ( X ,  Y ,  2) = F1 is geocentric inertial for LEO (X points toward the vernal equinox, Z toward the North 
Pole, and Y completes the right handed reference frame), and heliocentric inertial for other applications. The orbit of the 
origin of 3 0 ~ ~  is defined by the six orbital elements a (semimajor axis), e (eccentricity), i (inclination), $221 (longitude of 

ascending node), w (argument of perigee), u (true anomaly), and time of passage through perigee. The transformation 
between 3 0 ~ ~  and 31 is given by FORF = RF1 with R = R3 (W + V) Rz (i) R3 (Ol) where I& (.) denotes a rotation 
matrix of (.) around the direction specified by the subscript. It is useful to refer the translational dynamics of body i to the 
origin of 3 0 ~ ~ .  From Figure 2, the position vector of a generic structural point with respect to OORF is denoted by pi ,  
and we have ri = RQ + p i .  We define the state vector as X = (&,&,p1,q1,b1,W1, . . . , p i ,  qi,pi ,wi,  . . . p N ,  q N ,  b N , w ~ )  
where qi and wi represent the quaternion and angular velocity vector of the i-th spacecraft with respect to 31.  

3 Equations of Motion with respect to the Orbital Reference F'rame 

The position vectors of the N masses can be written as (i = 1, .., N ) :  

Ri= &+pi 
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where pi = ( xi 
becomes: 

yi zi ) FORF, &I = &FORF = Robi, and G R F  = G R F f i ,  R = Rb3. The velocity vector 

k= ( xi - Ryi $i + R(&I Xi) & ) FORF (2) 

ii, = RiJ +pi + a  x 0 x pi + 2 0  x /ii (3) 
The kinetic energy of the system can then be written as 

The total gravitational potential energy of the system is ( p  = G M ) :  

which, with the usual approximation: 

becomes 

xi 2x2 - y? - z? 
N 

v g = - - X m i ( l - - +  P a a )  

R o .  Ro 2Ri a=1 
The elastic potential energy of the system of the system of S viscoelastic springs can be written as: 

and the Raileigh dissipation function as 

(7) 

where k and c represent the stiffness and viscous damping constant of the spring, respectively, e, is the rest length of the 
spring, and for the case of one spring present between bodies 2 and 3 we may write 

e = ( e .  e ) +  = [(x3 - x2)2 + (y3 - y2)2 + (z3 - z2)2]+ 

= [ k3 - 22 - Q(Y3 - Y2) $3 - $2 + R(x3 - x2) i3 - k2 3 FORF 
and . . 1  e = ( e .  = { [ i 3  - x 2  - R(y3 - y2)]2 + [$3 - $2 + R(x3 - x2)]2 + (& - i 2 ) 2 } +  

The equations of motion can be derived from the well-known form 

d dT d(T-Vg -VE) dR 
-(-) - + - = Q i  
dt dqi 8% acii 

where &i are the generalized forces, and q = ( 51 y1 z1 ... XN YN ZN ) represents the generalized coordinates 
in matrix form. 
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For the system with three masses and one spring, the equations of motion become 

- Qzi 

&y1 $1+2Rk1 = 

&l E l  + R 2 q  = 

21 - 2051 - 3R2X1 = 
m l  

ml 

ml 

Qz3 

m3 
Q 93 $3 2 f h  C(y3 - c 2 )  + y(y3 - 92) = - 
m3 
QZ, 53 + R2Z3 + C(i3 - 22) + y(Z3 - 2'2) = - m3 

23 - 2Ry3 - 3 ~ ~ x 3  + c(k3 - i 2 )  + y(x3 - x2) = - 

where the generalized stiffness parameter (not restricted to small deformations) is 

E A  
y=-& e 

e 
and 

& = - - I  
e0 

is the generalized longitudinal strain. 

For the system with four masses and two springs, the equations of motion become 

- Qzi 21 - 2R$l - 3R2X1 = 
m l  

(24) 
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Figure 3: Different constitutive relation between a rod and a string. 

x:= 

which are obviously of a tri-diagonal form. Note that K is configuration dependent, since y.depends on the current spring 
length. Furthermore, as depicted in Figure 3,there is a significant difference between the constitutive response of a rod and 
that of a string: the rod may respond to compression with a similar intensity with which it responds to tension, whereas 
a string reacts in a negligible manner in compression. This difference is incorporated in the equations stated above by 
makine 

y 2 0 if E 2 0 
y < 0 if E < 0 rod : 

y 2 0 if E L 0 
y =  0 if E < 0 s t r i ng  : 

(47) 

Therefore, the viscoelastic rod model in what follows is representative of a prototype problem of a viscoelastic structure 
with bilateral springs (orbiting beam), whereas the viscoelastic string model in what follows is representative of a prototype 
problem of a viscoelastic structure with unilateral springs (tether). 

4 Equations of motion in a referential representation 

Adopting a Newtonian, rather than Lagrangean, approach, and measuring translational quantities with respect to 
3 0 ~ ~  ,the translational dynamics equations become: 

mipi = -pmi - - - - m i n  x s1 x pi -2mis1 x / i i+f i  +ui 
[I23 1231 

Assuming that lpil 5 (I Rol , 1 Ril), let us rewrite the underlined terms (henceforth denoted by G) as follows. 

(j,=---- Ri RO (pi +Ro) Ro 
iwii3 1 ~ 0 1 ~  - (pi + ~ 0 1 ~  1 ~ 0 1 ~  

7 
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But 

where a binomial expansion has been used in the approximation. Consequently: 

Expanding the product using the double vector product equality, and making use of 

(pi . RO) pi = pix (Pi + Ro) + P ~ R O  

(Pi . Ro) Ro = RoX (Ro + Pi) + @Pj 

we obtain 

[.ox ( ro  + pi) + ripi + Pix (pi + ro)  + P ? ~ o ]  
G N - - -  Pi 3 

r$ r i  

and neglecting second order terms in pi, we obtain the final result 

(2Ri13 + 3Rox (Ro x 1 3 ) )  
G 2 1 -  Pi 

R: 

Consequently, the equation of motion of translation, linearized with respect to the orbital motion, becomes: 

mipi+2mia x pi + mixorbpi = f i  + ui 
where 

Similarly, for the j - th body: 
mjpj+2mja X /ij + mj]COrbpj = f 3 . + Uj 

Subtracting eq.?? from eq. 58, and defining the relative position vector 

Pji = Pj - Pi 

we obtain the relative equations of motion as: 

mjpji+ (mj - mi) pi + 2mja x pj; + 2 (mj - mi) 0 x pi +mjlcorbpji + (mj - mi) IC,,bpi = (fj - fi) + (uj - ui) 
(62) 

Now, consider the relative rotational equations. The attitude of the i - th body can be described by the attitude of the 
dyadic 3i. Then, 3i may be referenced with respect to: the j-th body, a central body 0, the attitude of the formation 
center of mass ~ O R F ,  the inertial frame 31. Following our discussion, suppose that 3i is referenced with respect to 31. 
Then, the rotational Euler’s equations for the i - th and j - th body are: 

(63) 

(64) 

Jihi + wi x (Jiwi + hi) = gi + ~i 
Jjbj + w j  x (Jj% + hj) = gj  + 7.j 



where Ji and J j  are the body moment of inertia tensors, hi and hj represent the contribution of internal angular 
momentum (from now on, assumed to be zero), gi and gj are the perturbation torques, and ri and rj are the control 
torques. Defining the relative angular velocity 

wji = wj - wi 

and subtracting eq.?? from eq. ??, we obtain 

J 3 .& 3% . _  + (Jj - Ji) hi + wi x [(Jj - Ji) wi] + wi x Jjwji + wji x (Jjwj) = (gj 

The underlined terms may be rewritten as 

wi x Jjwji = (wi x Jj) . ~ j i  

- [(Jjwj) X 131 W j i  

consequently, eq. 66 may be rewritten as: 

Jjhji + (Jj  - Ji) Lji + wi x [(Jj - Ji) wi] + [(wi x Jj)  -' [(Jjwj) x 1311 . wji = (gj - 

In the rest of this paper we refer the equations of motion of the generic body to the origin of the orbiting reference 
frame, thereby recovering the C-W equations. A future paper will investigate the case in which the equations of motion 
are written with respect to another body of the formation. 

5 Virtual ~russ .  

We define a Visibility Array or Graph VA: it describes the instantaneous interconnection between members of the 
formation, and is described by the link between the pair of members defining that relative position/attitude ~ a r i a b l e . ~  The 
virtual truss model is useful to describe the dynamics of a formation as a whole, and is a very useful tool for sensitivity 
analyses. Self-similar dynamics may be identified (uniform expansion, uniform rotation), as a precursor to more complex 
models of formation reconfiguration. Changes in formation topology (fault tolerance, addition/deletion of feedback loops 
from neighboring spacecraft) may be described by means of graph theory-based algorithms. A switching function may 
also be defined for the configuration, and describes the truth table that realizes the present interconnection between the 
n members of the formation. This function is useful to implement formation reconfigurations (since it can be used as 
a functional of the current configuration which becomes rearranged during reconfigurations). The virtual truss is also 
useful to obtain reduced order models of a formation. Since it invokes the formation modes, techniques such as balanced 
realizations or modal cost analyses, can be adopted for dynamics and control analyses. 

In general, the dynamics are nonlinear, particularly when attitude reconfigurations and external perturbations are 
included. In our case, we limit our analysis to the design of a suitable feedback control law between members of the 
formation that takes into account the visibility between members. The components of the visibility array VA are represented 
by the coefficients uji, where uji = 0 for total disconnection between i and j ,  and uji = 1 for total connection. Therefore 
the uji matrix is in general non symmetric, and may be fully populated. Clearly, a fractional uji represents partial 
connection. A proportional-derivative control law may be thought of as the first order term in the expansion of a more 
generally nonlinear control law in terms of the perturbations in positions and velocities. For a proportional-derivative-type 
control, the interconnection terms take the form: 

n. n 

e:= ajiPj (Sj  - Si) + ajiDj ( S j  - S i )  
i=l i=l 

After algebraic manipulation, this expression becomes: 
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Consequently, we obtain: 

Mi%+ (Gi + Di + G;,) S i +  (Ci + Ki(S) + K>D) Si=Q:+FbS + FLS 

Considering all the bodies in the formation, stacking all equations together we obtain: 

and rearranging, we obtain: 
MS+ (3-1 + 2, - Ri) S+ (N+ K ( S )  - R2) S=Q, 

In first order form, the system equations of the large scale system (LSS) are 

X = A ( X ) X =  
0 1 [ -M-l (N + K(S)  - Rz) -M-' ('H + D - RI) 

(73) 

(74) 

(75) 

This equation represents an autonomous nonlinear dynamic system. One may obtain the modal content of the system by 
setting the characteristic equation equal to zero for a prescribed configuration of interest Xo, such that the dynamical 
matrix becomes A(&) . We immediately observe three zero frequencies (analogous to rigid body modes). A root locus 
analysis may be carried out to identify stability issues. Clearly, for strict LSS system stability, it must be that: 

or that all the eigenvalues of A(&) must have strictly negative real part. A state space realization of the formation 
may be required to reduce the order of the model for control purposes. This can be achieved with balanced realization 
techniques. In this case, the input-output controllability and observability characteristics of the formation can be taken 
into account with modal cost analysis techniques as in.4 Figures 4, 5 ,  6, and 7 show four possible combinations of the 
visibility array on a complex plane, when both the control gains as well as the tether stiffness and damping are changed. 
One may notice the unsymmetric character of this locus, which occurs when tether slackness arises (for negative values of 
the stiffness, set to zero for a string). These loci show only the region around the origin of the complex plane. Therefore, 
an interesting behavior occurs, leading to stability changes, depending on the character of the visibility array. 

More general statements may be made for the system's stability. In fact, we may invoke system's stability, subsystem's 
stability, interconnection stability, and other denominations as well. This is generally known in the literature of large scale 
systems. The subsystem equations of the virtual truss can be rewritten, in the general nonlinear case, as: 

Ai= fi (Xi I d  t +gi (Xi, t )  (77) 
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Figure 8: Array of two oscillators. 

The second term gi is the aggregation or interconnection term. In fact, the equation of each isolated subsystem (ISS) is 

Two questions arise. What about subsystem stability, i.e. is ISS stable? What about system interconnection stability? 

DEFINITION 1. The equilibrium point x, is  connectively stable if it is stable for  all interconnection matrices. The 
equilibrium point X ,  = 0 is uniformly asymptotically connectively stable in the large (a.s.i.1.) i f  there exists a Lyapunov 
function V ( X , t )  such that V ( X ,  t )  is positive definite, decrescent, 

-v ( X ,  t )  ILSS > 0 (79) 

for  all X and t (uniform stability) and V(X, t )  is radially unbounded. 

A question arises: If the system can be decomposed into n ISS subsystems, and we know what the interconnections 
gi (xi, t) look like, under what conditions is the original system a.s.i.l.? There exist some theorems5 with constructive 
proofs which can be used to assess if the system is a.s.i.1. It is equivalent to finding the conditions under which the 
subsystems are stable to a degree larger than the strength of the interconnections. 

THEOREM 2. (Araki, 1978) A system is a.s.i.1. i f  the following conditions hold: 1) for  each ISS there is  a Lyapunov 

(80) 

IdK/dXiI 5 Wi(.i) (81) 

2 
function K ( x i ,  t )  such that 

K (%t)  5 --ai [%(Xi)] 

Where constants ai>O and w i ( x i )  is positive definite (indicates degree of ISS stability). 2) For constants bij>O (indicating 
interconnection strength), the interconnection t e m  are bounded b y  

N 

Igi (Zi,t) I 2 C b i j W j ( X j )  
j 

3) The leading principal minors of the ( run)  matrix E are all > 0, where eii = ai - bii, and eij = - bij . 

More important for purposes of reconfiguring a formation, is the concept of connective stability, and of controllabil.ity 
and observability under structural perturbations. Both concepts are directly related to the intrinsic graph embedded in 
the formation. They make use of the interconnection matrix, or visibility graph. The concept of structural perturbations 
arises in the case of the formation losing or reacquiring a member. In this case, a variable topology can be assigned to the 
formation, as more intercomnnection terms participate in the stability of the whole system. As an example, consider the 
situation depicted in Figure 8.The linearized decentralized dynamics of each oscillator about a reference equilibrium angle 
can be written as: 

e,  + 2 ~ , 4 g f  (Tpl = u1 (83) 



e2 + 2<,g2e2 + ~ $ 8 ~  = u2 

u1 = -g12(e2 - e,) - h12(e2 - 4,) 
where we have assumed viscous-type dissipation. The control inputs may be written as: 

(84) 

(85) 

u2 = -921(& - 62) - h2l(bl - 82) (86) 
where, in general, gij and hij are elements of the visibility array multiplied by constants representing control gains, and 
in general gij # gji and hij # hji. For the homogeneous dynamics, we then obtain: 

82 + (2C2g2 - h21) e 2  + (gz - 921) 02 + 921'31 + h21ei = 0 (88) 
The underlined terms in these equations represent the interconnection terms. Stability (connective stability) of each 
subsystem is ensured provided that 

and provided that the effect of the interconnection terms is small and non-perturbing, i.e.: 

6 Conclusions 

In this paper, we have considered the effect of distributed flexibility arising from rod and string models on the dynamics 
of an orbiting formation. The paradigm considered in the paper, namely two bodies connected by one rod/string-like spring 
in formation with a separated free-flying body, represents a prototype system for a variety of possible concepts of formation 
flying involving deformable elements. The dynamic stability of the system is analyzed by parameterizing the loci of natural 
frequencies of the associated virtual truss when both the control gains as well as the stiffness coefficients are varied. Results 
show that different stability boundaries occur when unilateral vs. bilateral springs are considered. 

Continuation of this work will be in the area of the dynamic stability of formations of entirely deformable spacecraft, 
and implications for formation control. 
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