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Abstract-Evolution of electronic circuits has been 
intensively investigated for the last five years. The 
main challenge of the area is the evolution of circuits 
for industrial applications and also to find methods to 
improve the performance of Evolutionary Computation 
in electronic circuit synthesis. The authors have been 
studying this problem using different approaches, such 
as new methods for circuit representation and fitness 
evaluation function. We describe in this paper 
experiments on the evolution of current mode circuits. 
Experimental results in the area of computationa! 
circuits suggest that the search space for this class of 
circuits is more amenable for evolution than their 
voltage mode counterparts. At the end of the paper we 
propose an application in the area of fuzzy control, 
which can provide benefits for the aerospace 
community, such as in applications for propulsion 
controlled aircrafts. 
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1. INTRODUCTIOY 

This article describes new results achieved by the 
authors in the area of evolutionary design of electronic 
circuits (Evolvable Hardware). Particularly, we focus 
on the problem of finding new methods that will allow 
the automatic design of circuits for industrial and 
aerospace applications. 

Evolvable Hardware (EHW) encompasses 
applications in which Evolutionary Computation is 
applied to the design of electroaic circuits [I]. In 
addition to design automation, EHW brings many 
other advantages to electronic design, such as yielding 
low-power circuits [2], fault tolerant design [ 3 ] ,  
polymorphism [4], circuits for extreme temperatures 
[ 5 ] ,  and synthesis of coinpact fuzzy controllers. Other 
Evolvable Hardware applications found in the 
literature refer to the automatic design of certain 
electronic systems building blocks, such as amplifiers 
[6] ,  filters [7],  logic gates [SI, digital multipliers [9] 
and digital-to-analog converters [lo]. Sometimes 
evolution was able to find novel circuits and in other 
experiments human designed circuits were 
rediscovered by evolution. In this paper we focus on 
the synthesis of computational analog circuits and on 
fuzzy controllers, the latter being a promising case 
study for industrial applications. 

In a broader domain, we study new alternatives to 
improve the performance of Evolutionary Computation 
when applied to circuit synthesis. This problem may be 
tackled by changing the representation, the fitness 
evaluation function, or by posing the same problem in 
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a different way, such as changing the physical quantity 
to be measured at the circuit output. 

This paper also proposes future applications of 
evolved fuzzy controllers in aircraft control systems, 
such as computer-controlled engine thrust to provide 
emergency flight control capability. 

This paper is organized as follows: section 2 
provides a brief overview of Evolvable Hardware; 
section 3 shows the method devised by the authors and 
applied to the experiments presented in this article. 
Section 4 describes results on the evolution of 
computational circuits, such as Gaussian circuit, a 
multiplier and a fuzzy controller. Section 5 discusses 
the benefits of this approach for the design of flight 
control systems and section 6 concludes the article. 

2. EVOLVABLE HARDWARE: AN OVERVIEW 

Evolutionary Algorithms are search tools whose main 
operators are inspired by the natural evolution. Among 
these algorithms, we selected Genetic Algorithms 
(GAS) to handle the proposed problem. 

GAS carry out search through biological evolution 
simulation. Instead of focusing on just one potential 
solution to the problem, they sample a population of 
potential solutions. A population of individuals is 
initially randomly generated. Each individual IS a 
string that encodes, by means of a particular mapping, 
a potential solution to the problem. Individuals are also 
denominated chromosomes. The GA performs then 
operations of selection, crossover and mutation over 
the individuals, corresponding, respectively, to the 
principles of survival of the fittest, recombination of 
genetic material and mutation observed in nature. The 
selection step is probabilistic, but it favors individuals 
that have been assigned higher3tness indexes in an 
evaluation step performed beforehand. The fitness i s  a 
scalar measure of the performance of an individual 
according to the problem specification. The crossover 
operator splices the contents of two randomly chosen 
strings, producing two new individuals or ofspring. 
The mutation operator changes a particular string 
position at random and it is applied with a low 
probability. The search process is carried out through 
the generation of successive populations until a stop 
criteria is met. It is expected that the average 
population fitness will gradually increase along the 
generations. 

The genetic modeling developed to tackle our 
problem comprises the electronic circuit 
representation and its evaluation. They are both 
described next. 

2.1 - Representation 

The representation establishes a straightforward 
mapping between the electronic circuit topology and 
the integer strings processed by the GA. Each 
functional block of the string, also called gene, states 
the nature, value, and connecting points of a 
correspondent electronic component, which may 
include resistors, capacitors, bipolar transistors and 
MOS (Metal-Oxide-Semiconductor) transistors. 

Figure 1 depicts an example of this kind of 
chromosome-circuit mapping for a common emitter 
amplifier, 
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Figure 1- Analog Circuit’s Representation. Gene = 
[Connecting points, Component value, Component 
nature]. The Component nature is given by:O = 
transistor; I = resistor; 2 = capacitor 

The chromosomes are made up of genes, each of 
which encodes a particular component. In the above 
figure, the chromosome will consist of three genes. 
The gene determines the nature, value and connecting 
points of the related component. The total number of 
connecting points is a parameter to be set in this 
representation. This parameter is critical to the 
efficiency of the representation: if too few connecting 
points are considered, the number of possible 
topologies sampled by the evolutionary algorithm will 
be limited; conversely, if too many connecting points 
are considered, a higher number of unsimulatable 
topologies (with floating components) will arise. 
Additionally, each connecting point may be classified 



as internal or external. While the former does not 
serve for any special purpose, the latter is connected to 
one of the following signals: power supply, ground, 
input signal or probed output. 

One of the main advantages of this representation 
is the fact that it does not bias the search process to 
look for conventional topologies, by allowing 
unstructured connections among components. 
Additionally, we also borrow from nature the concept 
of each gene roughly encoding for a particular feature 
of the organism. 

The case studies presented in this paper use 
NMOS and PMOS transistors as circuit building 
blocks. 

2.2 - Evaluation 

The evaluation refers to the way a measure of 
performance is assigned to each circuit sampled by the 
GA. So far, most works concerning the evolution of 
analog circuits have used only one goal to be attained 
by the evolved circuit. Genetic Algorithms requires 
scalar fitness information on which to work; this 
information is later used to drive the selection process 
within the GA. The next section will discuss more on 
this topic. 

3. PROPOSED METHOD 

Many times we can simplify the problem 
specification without losing the desired functionality, 
and pose the same problem to the Evolutionary 
Algorithm in a different way. As an example, if we 
need to evolve a circuit that maps a functionf 

Where f is a hypothetical transfer function. 
Evolution can usually accomplish this task in the case 
of monotonic functions. We can, as an example, easily 
evolve a circuit that realizes a hyperbolic tangent 
function, described by: 

Figure 2 shows the fitness of the best circuits along 
the generations, where a quick convergence can be 
observed. Figure 3 compares the response of the 
evolved circuit against the target. 

Figure 2 - Fitness along the generations for 
Hyperbolic Tangent Circuit Evolution (Maximum 
possible fitness is ‘0’). 

Figure 3 - Response of the evolved and of the target 
Tanh circuits. 

Contrasting to the monotonic case, the task gets more 
difficult for more complicated DC transfer functions. 
For more complex fimctions than this, we can relax the 
operating point constraint, by specifying the fitness 
function in the following way: 

Where k is a proportionality constant that is “chosen” 
during evolution, Le., it is another degree of freedom 
for evolution. The Evolutionary Algorithm will then, 
instead of finding circuits obeying the strict 
relationship depicted in equation (l), search for 
circuits obeying the family of relations depicted in 
equation (3), which are likely to be more frequent in 
the search space. 

It is also advantageous to work with currents rather 
than voltages at the circuit output: the output current 
can span many decades, Le., from nano-amps to mili- 
amps, providing more potential solutions for evolution, 
since we can find in the literature many circuits that 
perform current to voltage conversion for very low 
current levels [ 1 I]. It is possible, therefore, to explore 
very low-current circuits, and to use appropriate output 



251  stages to convert back to the desired output voltage 
swing level, if necessary. 

4. EXPERIMENTS 

We apply this concept to evolve some computational 
circuits of practical interest, a Gaussian neuron, and a 
multiplier. We then extend the experiments to evolve a 
fuzzy controller using less than 10 transistors. Some 
of these case studies had been attempted previously 
without the technique described above, requiring, 
though, more computationally intensive experiments. 

4.1. Gaussian 

The evolution of this circuit has been successfiilly 
accomplished previously, however some mechanisms 
were employed to speed up evolution: hardware 
evolution andor evolution on a multi-processor 
machine [12]. 

technique, the circuit of 
Figure 4 was achieved. Figure 5 and 6 depict, 
respectively, the current and the voltage response of 
this circuit. Figure 6 also includes the target Gaussian 
curve. The conversion constant k stayed around IO5. 
After conversion, the voltage response exhibited an 
average error of 1.86% from the target. Physically, a 
simple resistance can realize the constant k The 
evolutionary algorithm sampled only 40 individuals 
over 40 generations. A Sun SPARC workstation was 
used in the experiment. 

By using the proposed 
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Figure 4 - Evolved Gaussian circuit. Transistor 
substrate connected to Vdd (PMOS) and to ground 
(NMOS). 
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Figure 5 - Current (uA) response of the evolved 
Gaussian circuit. 
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Figure 6 - Voltage response of the evolved Gaussian 
circuit (full line) and target (traces). 

4.2 Transconductance Multiplier 

Real-time multiplication of two signals is one of the 
most important operations in analog signal processing. 
The multiplier is used not only as a computational 
building block but also as a programming element in 
systems such as filters, neural networks, and as mixers 
and modulators in a communication system [13]. 
Particularly, transconductance multipliers yield the 
following output: 

i,(t) = k. Vl(t). VZ(t) 

where vl(t) and vz(t> are input signals and k is a 
constant with suitable dimension. This equation fits 
well with our approach. 

Figure 7 compares the schematic of a human-made 
design of a CMOS multiplier with the evolved design. 
Figure 8 shows the fitness value along the generations. 
The fitness is computed as the sum of the squared 
deviations between the actual output and the target, the 
ideal value being 0. Figure 9 compares the evolved 
circuit output (after being converted to voltage) to the 
target. This solution has been achieved after only 200 
generations, sampling 50 individuals. The average 
percentage error to the target obtained was 2.43%, 
whereas the highest error was of 10.18%. 



It can be observed from Figure 7 that the evolved 
multiplier uses 6 transistors, against 19 of the 
conventional circuit. 

, 

Figure 7 - Human designed multiplier 
(top) and evolved circuit (bottom). 
Substrate connections at ground for NMOS 
and Vdd for PMOS. 

Figure 8 - Fitness along 200 
generations for the multiplier. 

Figure 9 - Comparison between 
evolved and target surfaces for the 
multiplier. 

4.3 Synthesis of Compact FUZZY Controllers 

The evolution of analog controllers i s  a promising path 
for showing the potential of evolutionary electronics 
applied to potential industrial applications. 
Particularly, this case study refers to the evolution of a 
current mode circuit implementing a fuzzy controller 
surface. Most of the traditional fuzzy systems in use 
however, are quite simple in nature and the 
computation can be expressed in terms of a simple 
surface. An example is the control surface of a two- 
input fuzzy controller. A fuzzy circuit could be 
synthesized to approximate this surface. 

The example chosen is that of a fuzzy controller 
provided as a demo for the popular MATLAB 
software [14]. The “ball Juggler” is one of the demos 
of the MATLAB Fuzzy- Logic Toolbox. The hzzy  
controller for the ball juggler has two inputs and one 
control output. A screen capture illustrating the 
membership functions is shown in Figure 10. The 
controller is a simple Sugeno-type with 9 rules. A 
screen capture of the control surface is shown in 
Figure 11. 

A circuit approximating the control surface was 
evolved and is presented in Figure 12. The response, 
presented together with the target surface for 
comparison are shown in Figure 13. The average error 
achieved was of 1.93%, and the maximum error to the 
target surface was 6.7%. 

The circuit is rather robust, and was tested at 
variations in transistor sizes, supply voltage and 
temperature, with the following results: decreasing the 
transistor sizes by a factor of 10 did not change the 
circuit response and the deviation from the target; 
average error of 1.98% and maximum error of 6.96% 
when decreasing the power supply voltage to 4.75V; 
average error of 1.94% and maximum error of 6.65% 
when increasing the power supply voltage to 5.25V; 
average error of 1.89% and maximum error of 6.3% 
when decreasing the temperature to 0°C; average error 



of 1.98% and maximum error of 7.2% when increasing 
the temperature to 55°C. 

Figure 10 - Membership functions for the ball-juggler 
fuzzy controller. 
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Figure 11 - Surface of the ball juggler fuzzy 
controller. 
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Figure 12 - Evolved circuit realizing ball juggler 
fuzzy controller. Transistor substrate connections at 
5V for PMOS and OV for NMOS. 

Finally, a different model, (specific for a HP 0.5 MOS 
fabrication process) led to qualitatively the same 

result, with slight increase in the error. That error 
became small again when evolution targeted a circuit 
in that specific process. 

Figure 13 - Comparison between response and target 
for the evolved fuzzy controller. 

5. APPLICATIONS FOR PROPULSION CONTROLLED 

AIRCRAFTS 

One of the goals of this research is to evolve fuzzy 
control surfaces for aircraft propulsion control [ 151. 
This objective of this system is to employ pilot flight 
path inputs and aircraft sensor feedback parameters to 
provide appropriate engine thrust commands for 
emergency flight control, reducing thus the number of 
accidents. The control system acts both oil the 
longitudinal control using collective thrust and lateral- 
directional control, using differential thrust. 

Contrasting to other systems reported in the literature 
[ 151, the objective is to have a low power consumption 
analog controller, for manned and unmanned aircrafts. 
This will require a strong interaction with experienced 
pilotskmgineers to design the fuzzy control surface: for 
instance how to determine the flight path and bank 
angle commands given airspeed, roll rate, yaw rate, 
etc. In addition, the low-power analog controller could 
also generate other commands for the aircraft, such as 
flap controls when landing. 

We observed in these experiments that evolving 
circuits that work in current mode facilitates the task of 
the Evolutionary Algorithm, when comparing to circuit 
evolution sampling a voltage at the output. We showed 
results €or a Gaussian circuit, a multiplier circuit and a 
fuzzy controller. 

The evolution of a compact fuzzy controller is a 
promising result for industrial applications of 
Evolvable Hardware, and the authors will tackle 



aircraft control using this technique. Even though 
important from a practical point of view, the evolution 
of fuzzy control surfaces turned out to be a simple 
problem for evolution when using this technique, This 
result encourages the authors to address more complex 
case studies in the near future. 
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