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Abstract-Top-level reliability models have been developed 
for several recent configurations of the Space Interferometry 
Mission (SIM) and the results used in the decision process 
for selecting viable configurations for further study. For one 
configuration, closed-form solutions were obtained. For 
three configurations, Excel-based Monte Carlo models were 
developed. The agreement between the closed form and the 
Monte Carlo models was excellent, verifying that the Excel- 
based approach had been successfully implemented. The 
Excel model has the flexibility to extend the model to more 
complicated arrangements for which it would be impractical 
to develop closed-form solutions. 

The Space Interferometry Mission in NASA’s Origins 
Program is a 1 Om-baseline space-based Michelson 
interferometer scheduled for launch in 2009. This large 
instrument will measure the angles between stars to an 
accuracy of about one billionth of a degree of arc. This is an 
improvement of about two orders of magnitude over current 
astrometric instruments. 
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1. INTRODUCTION 
The Space Interferometry Mission (SIM) is a joint effort of 
NASA Jet Propulsion Laboratory, California Institute of 
Technology, Lockheed Martin Missiles and Space, and 
TRW. SIM will use Interferometry to measure the angles 

between pairs of stars to the unprecedented accuracy of 
about 1 p arc second (pas). Analysis of these measurements 
will enable several scientific objectives to be realized. A 
key objective is to infer the orbital parameters of planets 
around nearby stars based on the reflex motion of the star. 
SIM should be able to detect planets as small as the earth in 
favorable orbits, and will easily detect Saturn mass planets. 
These measurements will complement radial velocity 
measurements already made using earth-based telescopes, 
but will extend to smaller masses in longer orbits, and will 
resolve the inclination of the orbits, something that cannot 
be done using the radial velocity technique. Besides planet- 
defection, SIM will investigate many other celestial 
phenomena [I]. Additional general information about SIM 
can be found at the SIM Website: http://sini.ipl.nasa.gov [2]. 

SIM is currently in Phase A (Conceptual Design). In this 
phase, many different configurations are assessed at a fairly 
high (coarse) level. At this stage, it is not appropriate to 
develop very detailed reliability models. The overall design 
changes too rapidly and the changes are so great that it 
would be both impractical and too costly to develop very 
detailed models. However, it has been very useful to 
develop high-level reliability models, which can be used to 
compare the relative reliability of different configurations. 
The models are composed of a handful of large blocks. At 
this level of modeling, reliability databases do not exist, so 
actual probabilities cannot be used. However, by varying 
the reliability parametrically over a reasonable range, one 
can identify arrangements that are particular sensitive to 
failures or that are particularly insensitive to failures. Even 
though the actual probability numbers that come out of the 
models cannot be considered realistic estimates of the actual 
mission success probability, the relative reliabilities among 
various arrangements of the elements are useful in a 
comparative sense. This information has been used as part 
of a larger decision making process to select among various 
configurations. Also, within a configuration, it is possible to 
consider different arrangements of the elements to enhance 
reliability or to identify deficiencies that should be 
addressed. 
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2. OVERVIEW OF sm 
SIM pe r fom astrometry (measurement of star locations) by 
using a white light Michelson interferometer with a 10 m 
baseline. Groups of optical elements (similar to telescopes) 
are located 10 m apart on opposite ends of a Precision 
Support Structure (PSS) to collect the starlight. Light from 
these telescope-like assemblies is combined in an 
Astrometric Beam Combiner (ABC) in the middle of this 
large instrument. Optical Delay Lines (ODLs) are used to 
adjust the path length followed by the starlight so that the 
wavefronts from both arms of the interferometer arrive at the 
detector at precisely the same time. The path lengths within 
the instrument are then measured to a precision (not 
accuracy) of a few tens ofpicometers (1 pm = 10-12m) using 
infrared lasers metrology gauges. Based on these 
measurements and other laser gauge measurements of the 
baseline length, the angle between the target star and the 
baseline is determined. In order to determine the orientation 
of the astrometric baseline, two other similar astrometric 
interferometers are used. The baselines for all the 
interferometers are kept as parallel as possible. The laser 
metrology system measures the small amount of deviation 
from parallelism to make corrections to the results. 

The laser gauges are not absolute gauges. They do not 
measure the actual distances involved, but rather the changes 
in the distances with a precision of tens of picometers. The 
absolute lengths are basically calibrated by using 
measurements of stars around the sky. We measure a 
gridwork of stars spanning a large part of the celestial 
sphere, and then adjust the scale factor for the instrument to 
“close the grid.” This is somewhat analogous to a surveyor 
measuring angles around a full circle and verifying that the 
total is equal to 360” and adjusting the scale factor to make 
it so. 

More description about SIM and how it performs astrometry 
can be found in previous IEEE Aerospace Conference 
papers, “SIM Configuration Evolution” [3] and “Space 
Interferometry Mission Instrument Mechanical Layout” [4]. 

3. RELIABILITY MODELING 
High-level (i.e. coarse) reliability models were developed 
for three competing configurations for SIM. The reliability 
models were used to help chose among these various 
options. The design of SIM has now evolved away from any 
of these designs, but the examples are still illustrative of the 
value of the relatively simple reliability models. They also 
illustrate that the methods presented here can be applied to 
reasonably complicated situations successfully without a 
tremendous expenditure of resources. 

The three configurations modeled were named SIM Classic, 
Shared Baseline, and ParaSIM. At the time, SIM Classic 
was the reference design and the other two were proposed 
alternative designs. There were also several variants on 

each of these, but the three basic arrangements were 
modeled to help understand the aspects that might be 
sensitive in a reliability sense. This paper will focus on the 
SIM Classic Models. 

Figure 1 SIM Classic 

The current SIM Configuration is a variant of Shared 
Baseline and it is being described in a companion paper in a 
different session at this same conference [ 5 ] .  

The first reliability model developed was for SIM Classic. 
At first, we did not plan to develop a reliability model, per 
se. Instead, we were trying to break down the system into 
relatively large logical blocks and looking at the interactions 
to get a sense for how they interacted from a reliability point 
of view. We expected only to develop a qualitative feel for 
these interactions. One of the authors (Kim Aaron) 
developed a block diagram showing some connectivity 
(series and parallel) among the various elements discussing 
how the system could continue to operate in the face of 
various types of failures. Another of the authors (Don 
Ebbeler) realized that it might be possible, at least in 
principle, to develop a closed-form solution for the 
reliability of the overall system based on assumed values for 
the individual blocks. After a significant effort with a fair 
amount of review and revision, a closed-form solution was 
actually developed for SIM Classic. The resultant equation, 
while not being trivial and obvious, was not as formidable as 
we had expected it to be. A second closed-form solution 
was also developed for SIM Classic, but with a different set 
of assumptions about which of the many redundant 
arrangements of the metrology kite could actually be 
considered operational. It turned out to be much more 
difficult to develop the closed-form solution for that case, 
but in the end, this problem also succumbed. However, it 
was clear that if we tried to increase the complexity of the 
model much beyond the point we were at, analytic solutions 
would rapidly become intractable. 

Because we expected to need more complicated reliability 
models eventually (and because the commercially available 



reliability models were not set up to handle the unusual 
connectivity among the SIM elements) we decided to 
develop an Excel-based Monte-Carlo simulation instead. 
George Fox had been developing such capability for other 
projects and had created several macroslsubroutinesladd-ins 
for Excel. Starting with the same SIM block diagram, he 
was able to develop a model in Excel very rapidly (in just a 
few hours). This was particularly impressive since it had 
taken weeks to get the closed-form solution to the point that 
we believed it was correct. A little debugging was required, 
but very soon, the results from the Monte Carlo model were 
matching the predictions of the closed-form equations. 
Furthermore, it was reasonably easy for George to modify 
the connections of the elements in the model to represent the 
more complex alternative. 

Having gained some confidence in the results of the Excel 
modeling approach, we developed similar Excel models for 
the other two SIM design configurations (Shared Baseline 
and ParaSIM). 

Because we do not have any true reliability data for the 
kinds of blocks used in these models, we simply varied the 
reliability values for each block parametrically over a 
reasonably representative range. The model was exercised 
and the predicted overall reliability calculated for various 
combinations of parameters. This provided us with useful 
sensitivity data. In fact, some design changes were made as 
a direct consequence of seeing these results. 

4. SIM BUILDING BLOCKS 
The reliability models comprise several large blocks. Each 
will be described briefly here. A schematic, Figure 2 below, 
shows how these elements are connected together in the 
reliability model for SIM Classic. 

Siderostat Bay 

The Siderostat Bay, or Sid Bay for short, is a combination of 
major optical elements mounted on a very precise and stable 
optical bench. In the version of SIM Classic modeled here, 
there are seven Sid Bays. The Sid Bay is not one of the 
reliability model blocks, but it is an important structure 
housing some of the reliability model blocks, so it is 
mentioned here. 

Beam Compressor-A major subassembly mounted within 
the Sid Bay is the Beam Compressor. A beam compressor is 
similar to a telescope in that it has several powered optics. 
However, a telescope typically focuses the incoming light to 
form an image on a detector. In contrast, a beam 
compressor is afocal; instead of focusing the beam, it merely 
reduces the size of the beam. The output of this assembly is 
a smaller bundle of parallel light rays that are much easier to 
manipulate and guide throughout the rest of the instrument 
using small flat relay mirrors. 

Siderostat Mirror-A Siderostat is a large flat mirror 
mounted on gimbals. It is also a major element mounted in 
the Sid Bay. It takes light from the target star of interest and 
reflects it along the optical axis of the Beam Compressor. A 
Siderostat is so named because it keeps the pointing 
direction stationary in sidereal space. 

Residual Siderostat Bay Elements 

After starlight has bounced off the Siderostat Mirror, it 
follows a path dictated by many successive optical elements 
(starting with the Beam Compressor). Since these elements 
are all in series, in both an optical sense and a reliability 
sense, they are lumped together as a single reliability block 
and called Residual Siderostat Bay Elements. In a more 
detailed reliability model, one might choose to model the 
actuators for the fast steering mirror, for example. In the 
current model, that level of detail would have been 
inappropriate and unwieldy. 

Optical Switchyard 

SIM operates by combining starlight from two Sid Bays in 
an Astrometric Beam Combiner (described below). In SIM 
Classic, there are seven Sid Bays and three interferometers 
must be formed. The Optical Switchyard is a set of rotating 
flat mirrors that can used to channel the light from three 
pairs of Sid Bays into any three of the four Astrometric 
Beam Combiners in any combination desired. Provided the 
Switchyard itself is highly reliable, this arrangement 
provides system level robustness. The extra Sid Bay and 
extra Beam Combiner are included to provide redundancy. 

Optical Delay Line 

An Optical Delay Line (ODL) is a group of optical elements 
mounted on a moving trolley. Its purpose is simply to 
change the path length followed by the starlight. It is 
sometimes referred to as a trombone. Delay Lines are used 
to adjust the distance traveled by starlight in the two arms of 
the interferometer. In order to form white light fringes in the 
Astrometric Beam Combiner, the light must travel exactly 
the same distance from the source (the star) through each 
arm of the interferometer to the fringe detector. The ODL 
performs this function for SIM. In principle, only one delay 
line is required. However, in SIM, the delay line operates at 
a sufficiently high frequency that it can actively damp 
vibrations due to the spacecraft and instrument. We have 
chosen to split the function of the delay line into two halves: 
one handles the low bandwidth long stroke portion, which is 
a few meters; the other handles the high bandwidth short 
stroke motions. This way, the voice coil and piezoelectric 
actuators on the high bandwidth delay line do not travel over 
several meters, trailing cables as they go. Instead, they are 
mounted in a fixed location. The long stroke low bandwidth 
device carries only optics, and so the cable handling is 
simplified. Another advantage of having two delay lines, 
one in each arm of the interferometer, is that the light will 
then experience exactly the same number of reflections in 



exactly the same sequence in each arm. This is desirable for 
matching polarization and intensity of the starlight in the two 
arms. 

In SIM, there are eight total delay lines, four low bandwidth 
and four high bandwidth. There are also four Astrometric 
Beam Combiners (ABC). In SIM Classic, a particular low 
bandwidth delay line and a particular high bandwidth delay 
line are always connected to a specific ABC. In reliability 
terms, these elements are in series. 

Astrometric Beam Combiner 

After the starlight has progressed past all the Residual 
Siderostat Bay elements and Optical Delay Lines, it 
eventually enters the Astrometric Beam Combiner (ABC). 
This device is a further collection of optical elements, 
detectors, etc. and forms the heart of the astrometric 
interferometer. It takes the star light from two different 
Siderostat Bays and combines them in an interferometric 
manner and focuses the light onto detectors. By measuring 
the phase difference between the starlight from the two 
arms, one can deduce the angle to the star. The ABC also 
houses internal metrology beam launchers, which measure 

Metrology Kite 

the internal path length from the beam combiner to the 
Siderostats. 

Triple Corner Cube 

A corner cube is an arrangement of three mirrors, each 
perpendicular to the other two. The point of intersection of 
the three planes is called the vertex of the corner cube. A 
corner cube has the property that any beam of light entering 
the corner will undergo three bounces, one from each 
surface, and the outgoing beam will then be parallel to the 
incoming beam. This characteristic holds for any direction 
of the incoming beam entering the corner. A single corner 
cube is mounted on the face of each Sid Mirror. This 
Corner Cube must be mounted precisely so its vertex is 
within a few pm of the reflective surface of the Sid Mirror. 

A triple corner cube (TCC) is an arrangement of optical 
prisms with mirrored surfaces and arranged to form three 
different corner cubes all sharing a common vertex. There 
are several ways of achieving this. SIM Classic uses an 
arrangement in which three 30" wedges with their transverse 
surfaces coated with reflective material (bare gold for SIM) 
are bonded onto a reflective optical flat. This triple corner 
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Figure 2 SIM Classic Reliability Model Schematic 



cubes resembles three wedges of cheese, sitting on a flat 
platter, with their points meeting in the center. In SIM 
Classic, a triple comer cube is mounted at each of the four 
comers of the Extemal Metrology Kite. 

Beam Launchers 

A beam launcher is an optical device used to measure the 
distance between two comer cubes. Actually, in SIM, the 
beam launchers only measure changes in the distance 
between the corner cubes precisely. There are many beam 
launchers in SIM. Laser light (infrared light, actually, with a 
wavelength of 1.3 pm) is fed into the beam launcher using 
optical fibers. The light from the fiber tip is collimated and 
“launched” out of the beam launcher. The light is aimed 
towards a comer cube. After hitting the comer cube, the 
beam returns to the beam launcher along a direction parallel 
to the outgoing beam. A similar beam is launched from the 
beam launcher in the opposite direction towards a second 
comer cube, which also retums the beam parallel to the 
incident beam. The two retuming beams are combined 
inside the beam launcher with a reference beam at a slightly 
shifted wavelength to produce a heterodyne signal. The 
beam launcher operates as a laser interferometer. The phase 
of the heterodyne signal (effectively the fringe position) is 
resolved to about 1 part in 10,000 of a wavelength. Thus, 
changes in the distance between the two comer cubes is 
measured with a precision of 1.3 um/10,000/2 = 65 pm. By 
sampling the detectors as frequently as 100,000 times per 
second and averaging, the effective precision is reduced to a 
few picometers, assuming the noise in the system is 
uncorrelated, incoherent and stationary (in a statistical 
sense). 

Kite Beam Launchers-Many Beam Launchers are used in 
SIM. Kite Beam Launchers are used to measure the 
distances between various pairs of triple comer cubes, which 
are situated at the vertices of the Extemal Metrology Kite on 
SIM Classic. 

Siderostat Bay Beam Launchers-Four beam launchers, as 
described above, are mounted in each Siderostat Bay. These 
beam launchers resolve changes in the distances between the 
comer cubes attached to the Siderostat Mirrors and the triple 
comer cubes located at the vertices of the Extemal 
Metrology Kite. Sid Bay Beam Launchers (SBBLs) and 
Kite Beam Launchers (KBLs) are physically identical, but 
they are used differently in the reliability model, and so they 
are named differently here to distinguish them. 

Kite Triangles 

The Extemal Metrology Kite on SIM Classic is a flat square 
perpendicular to the baseline of seven Siderostats. At each 
comer (or kite vertex) is a triple comer cube (TCC). Six 
Kite Beam Launchers (KBLs) measure the intravertex 
distances between vertices. 

The distances from the kite vertices to the corner cube on 
each Siderostat Mirror are measured using the Sid Bay 
Beam Launchers (SBBLs). These distances are used to 
triangulate the position of the Siderostat with respect to the 
plane of the kite. Only three of the four kite vertices are 
required for SIM to operate. These three vertices would 
naturally form a triangle. There are only four ways to form 
a triangle connecting the corners of a square. Each of these 
triangles contains exactly three TCCs and three KBLs. 
Although it now seems obvious, it was the recognition that 
we could break the square down into these triangles that 
enabled us to proceed with the closed form solution. Prior 
to that, the connectivity among the various elements forming 
SIM seemed too complicated to deal with in a simple 
manner. 

These kite triangles are not independent, and they are not 
treated as being independent in the reliability model. Still, it 
was helpful to decompose the elements into these triangles 
and consider the logical connections of these kite triangles 
to the Siderostats. 

Triangle Usage-Any triangle can be used as a base for 
triangulating the positions of all the Siderostat Mirrors. If 
one measures the distances from each of the three corners 
down to a Sid Mirror, then one can determine the x, y, and z 
coordinates of that Sid Mirror with respect to a local frame 
of reference attached to the triangle. Of course, these three 
measurements can only be made if the three Sid Bay Beam 
Launchers (SBBLs) aimed at the three comers of the 
triangle are still operating. 

Initially, there are four operational SBBLs in each Sid Bay. 
In this initial condition, the coordinates of the Siderostat 
Mirror can be found using any of the four triangles. 
Throughout the mission, it is possible that some of the 
SBBLs might fail. This is undesirable, but one can never 
guarantee there will be no failures. In fact, it is to protect 
against such failures that redundant SBBLs are used. 

If two SBBLs fail in any particular Sid Bay, then that Sid 
Bay is effectively inoperative because it is not possible to 
determine all three coordinates of the Sid Mirror using just 
two linear measurements. Even in this unlikely situation, the 
whole system can continue to operate because there are still 
six operational Sid Bays. The design of the instrument 
includes redundancy at several levels. 

There is a question as to whether the positions of all Sid 
Mirrors must be related to the same triangle, or if it is 
possible to use different triangles for different Sid Bays. 
The closed-form reliability expressions are derived to cover 
each of these situations. 

5. CLOSED-FORM RELIABILITY EQUATIONS 
Reliability Equations are derived for SIM Classic for the 
two operational constraints: 1) All Sid Bays must use the 



same External Metrology Triangle; 2) Sid Bays can use any 
triangle available to them. 

The four vertices of the External Metrology Kite are 
nominally in the same plane, but small deformations of the 
structure are unavoidable due to temperature differences in 
the structure, for instance. By just measuring the in-plane 
distances, it is not possible, to first order, to determine the 
out of plane displacement of the vertices. However, if at 
least one Sid Bay has all four SBBLs working (a very likely 
situation), then it is possible to determine the out of plane 
displacements of the kite and thus relate any triangle to any 
other triangle. When this work was first performed, it was 
not clear that this would give acceptable accuracy in the 
knowledge of the positions of the Sid Mirrors. A later 
analysis confirmed that the knowledge of Sid Mirror 
positions only degrades about 10% when more than one 
triangle is used versus the situation in which all Sid Bays use 
the same triangle. Because we were unsure about the ability 
to use multiple triangles, we developed the closed-form 
equations for both cases. Allowing the use of multiple 
triangles improves the probability that the system will 
remain operational. 

Reliability 

Since we will be using the term, “reliability” frequently in 
this paper, we will describe what we mean by the term. We 
mean the probability that something is (still) working. 
Usually, we will mean the probability that the device or 
system is still functioning at the end of the nominal space 
mission 5 % years after launch. The expressions, however, 
do not include time dependence. The expressions we derive 
are simply combinations of the reliabilities of the various 
blocks. The expressions could just as easily be evaluated at 
any intermediate point in the mission (using appropriately 
higher component reliabilities consistent with that point in 
the mission lifetime). 

We’ll use “ R  ” to denote reliability. Although we will 
sometimes use P to mean probability in a general sense, 
often we will use it as the complement of R : ( R  = 1 - P )  . 
Thus, P will represent the probability that the device or 
system has failed. 

In our analyses here, we assume that if a device fails at some 
point in the mission, it remains inoperative for the remainder 
of the mission. In reality, there is some chance that a 
defective device might recover. 

Triangles Available 

In deriving the reliability relations, we started with the kite 
triangles. We found it helpful to consider the possible states 
of the External Metrology Kite in terms of the number of 
triangles available (i.e., operating). 

A kite requires three triple comer cubes (TCC) and the three 
specific corresponding Kite Beam Launchers (KBLs) all to 
be operational for the triangle to be available. This can be 
seen by examining any of the four larger triangles in Figure 
3 below. For example, triangle 1-2-3 will only be available 
if TCCs 1, 2, 3 and KBLs A, B, C are all operational. 

Figure 3 External Metrology Kite 

Triple Corner Cube Reliability-Let Pr be the probability 
that a TCC fails. There is a TCC at each of the four corners 
of the Met Kite, and three are required to form any triangle, 
so the useful states of the Met Kite are zero TCC failures 
and one TCC failure. If two or more TCCs fail, then the 
entire system fails. The probability of zero TCC failures is 

R, = (1-P,)4and of exactly one TCC failure is 

4P, (1 - P T ) ~  . Thus, from the view of just availability of 
triangles based on TCCs, the probability of being in a useful 
state is 

4 

P(usefu1 state} = (1 - + 4PT(1 - PT)3 
This is illustrated schematically in Figure 4 and Figure 5 
below. 

( I -  PTj4 
I TCC I 

Figure 4 Reliability Diagram for Triple Corner Cube 

(: 1 - 

Figure 5 Equivalent Combined Block for Triple Corner 
Cube Reliability 



Kite Beam Launcher Reliability-Let PK be the probability 
that a KBL fails. Each KBL is shared by exactly two 
different triangles. If a KBL fails, then two of the triangles 
will become unavailable. There is no state in which exactly 
three triangles are available. The only states are 0, 1, 2, 4 
triangles available. We found it easiest to consider the 
conditional probabilities of the KBLs being in a useful state 
given either of the useful states based on the TCCs. 

If one of the TCCs has failed, then the three associated 
KBLs must be operational. The probability that three 

specific K B L ~  is operational is R K ~  = (1 - PK ) ’. We use 
this as a conditional probability in the overall reliability 
expression. 

When zero TCCs have failed, there are three mutually 
exclusive states of the KBLs that will still enable the 
interferometer to work (one, two or four triangles operating). 
The probability that all four triangles are available (all six 

KBLs operational) is (1  - PK)6. The probability that two 
triangles are available (exactly five KBLs operational) is 

6 p ~ ( l - P K ) ~  . The probability that one triangle is 
available (three or four KBLs operational) is 

4(1- PK)3[PK3 + 3 PK2(1 - PK 11 . Kite reliability for 
the three triangle operational states is shown in Figure 6. 

- 2 triangles (1- X 6 P, (1- P d 5  

“see” any triangle, then it is functional. In a later section, 
we will derive a different expression based on the 
assumption that all Sid Bays must use the same triangle. 

In each Sid Bay, there are four Sid Bay Beam Launchers 
(SBBLs). Each SBBL is aimed at a different corner of the 
Met Kite. If just one particular triangle is available, then the 
three SBBLs aimed at the corners of that triangle must be 
operating for the Sid Bay to be considered operational. 

Let P’, be the probability that a SBBL fails. Let 

Rs = (1 - Ps) be the probability that the rest of the Sid 
Bay elements are working. 

Four Triangles Available-If four triangles are available, 
then the Sid Bay will be operational if any three of the four 
SBBLs are operational. This can be decomposed into two 
cases: zero failures and one failure of a SBBL. The 

probability of zero failures is (1 - PB)4. The probability of 
exactly one failure out of the four SBBLs is 

4 PB(1- Ps)3 . Thus, the probability that the Sid Bay is 
working conditional on four triangles being available is 

P{ Sid Bay Working I 4 Triangles Working} 

= [ ( I  - PLd4 + 4 PB(1- PB)3](1 - Ps) 
For notational convenience, we will define this expression to 
be equal to (1 - Q4) . Since this is the probability that a Sid 
Bay can be considered operational given that four triangles 
are available, then Q4 is the probability that a Sid Bay has 
failed, given that four triangles are available. There are 
seven Sid Bays, and only six are required for the SIM 
Instrument to be considered functional. The probability that 
six out of seven Sid Bays are working (given four triangles) 

is (1 - Q4)7 + 7 Q4(l - Q4)6 . We will keep this more 
compact notation, but it would be easy to expand this to 
display the full expression. 

Figure 6 Reliability Diagram for Metrology Kite 

The reliability for each branch is found by multiplying the 
TCC probabilities by the probabilities of the KBL states 
conditional on the TCC states. The overall reliability of kite 
availability is then found by summing all the branches on the 
right hand side of Figure 6. 

Operational States 

Siderostat Bay Reliability 

In this section, we discuss the probability that a Sid Bay is 
considered functioning conditional on the various states of 
the Metrology Kite. Here, we assume that if a Sid Bay can 

Two Triangles Available-If two triangles are available, the 
corresponding probability that the Siderostat Bay is working 

is (1 - ps)[ ( l -  + 2 PB (1 - Ps)3] . The factor of 2 
occurs because there are just two ways to select the SBBLs 

that can interact successfully with the two available 
triangles. We define this expression to be (1  - Q2) . The 

subscript on the Q refers to the number of triangles 
available. The probability that six Sid Bays are operational, 

conditional on exactly two triangles being available is 

One Triangle Available-If only one triangle is available, 
the corresponding probability that the siderostat bay is 



working is ( ~ - P S ) [ ( ~ - P ~ ) ~  +PB(l-PB)3].  This, in 

turn, is defined to be (1 - e,). The probability that 
at least six of the siderostat bays are working, given that 
only one triangle is available, is: 

u-Q)' + 7  Q~O-Q$. 
Optical Switchyard 

The Optical Switchyard is composed of two banks of 
steering mirrors. The upper bank has seven steerable 
mirrors. The lower bank has eight steerable mirrors. Each 
of the upper switchyard mirrors takes the output of one of 
the seven Sid Bays and diverts it down to any of the eight 
lower switchyard mirrors. Each lower switchyard mirror, 
receives the beam of light from an upper switchyard mirror 
and diverts it into one of the eight optical delay lines. Each 
upper switchyard mirror is always associated with a specific 
Sid Bay. Similarly, each lower switchyard mirror is always 
associated with a particular delay line. Pairs of delay lines 
are always associated with a particular Astrometric Beam 
Combiner (ABC). Rather than defining separate reliability 
parameters for the switchyard and delay line elements, we 
have lumped them with the major elements with which they 
are in series. The upper switchyard reliability is 
incorporated into the Sid Bay residual elements reliability, 
defined above. Similarly, we lump the reliability of the 
lower switchyard mirrors and delay lines into the Beam 
Combiner Reliability, 

Let the probability of a Beam Combiner Assembly (beam 
combiner, delay lines and lower switchyard mirrors) failure 
be Pc. At least three of the four Beam Combiner 
Assemblies must be working for the system to be 
operational. The probability of that event is 

(1 - Pc)4 + 4 Pc (1 - Pc)3 . The resulting Classic SIM 
reliability structure is given in Figure 4. 

Figure 7 Reliability Diagram for SIM Classic assuming 
Sid Bays can use any Met Triangle 

The Optical Switchyard does not explicitly appear in the 
reliability diagram. However, it manifests itself as the 
confluence of the three branches on the right hand side of 

the diagram. We have added a block representing the 
probability that the Rest of SIM is operating: (1 - PR) . The 
full reliability expression can be generated from the 
reliability diagram. Elements in series are multiplied, 
whereas branches in parallel are summed. The full 
expression for SIM Classic assuming Sid Bays can use any 
available triangle is given by: 

Al l  Sin Bays Must Use the Same Triangle 

Now we consider the constraint that all Sid Bays must use 
the same triangle. The derivation of the reliability 
expression was more challenging for this case. We used a 
different approach based on the union of four events, as 
described in the following section. 

Union of Events-We need a general expression for the 
probability that at least six Siderostat Bays can all see at 
least one of the available triangles. As a step along the way, 
let Ei be the event that at least six Siderostat Bays can all 

see the ifh triangle. The notation is a little confusing. This 
subscript refers to a specific triangle (1 to 4) rather than to 
the number of triangles available. The union of the four 
events El, E,, E3, and E4 is exactly the condition for which 
we wish to assess the probability. Of course, there are 
intersections among these events, which must be accounted 
for. We will use symmetries to simplify the solution. For 
instance, P(EJ = P(E2) = P(E3) = P(E3. The following is a 
general expression for the probability of the union of (Ei} 
as a function of their intersections when there is symmetry of 
the four events: 

4P(E,) - 6P(E1 n E 2 )  + 4P(E1 n E, n E 3 )  - P(El n E, n E3 n Ed) .  

If we develop expressions for the appropriate intersections, 
then we will be able to evaluate the probability of the union. 

It is helpful to consider different states of the Metrology 
Kite in terms of the number of triangles available. 

One Triangle Available-If Sid Bays are constrained to use 
a common triangle and only one is available, then obviously 
they must use that one. The result is thus identical to the 
previous case with one triangle available as we will see 
towards the end of this section. However, for the cases of 
two and four triangles available a different approach is now 
necessary in order to derive the closed form expression for 
reliability. We will introduce and apply a consistent notation 



for all three cases under the constraint that all Siderostat 
Bays must use the same triangle. 

Let (1 - $1) be the probability that a given Sid Bay can see 
a specific single triangle. The subscript, 1, refers to the 
number of triangles specified and not to a specific triangle. 
This is the same as the probability (1-Ql) developed 
earlier: 

(1 - s, = (1 - ~,)[(1- pB14 + pB (1 - P ~ ) ~  3. 
That is, in order to see a specific triangle, the residual Sid 
Bay elements must be working and either 4 SBBL must be 
functioning, or else the right 3 must be functioning and the 
fourth one failed. Actually, an equivalent approach is 
simply that the correct three right SBBLs must be working, 
so the term in square brackets could be replaced by 
[(1-f”)3]. One can see that with very simple 
manipulation, the original expression in square brackets can 
be reduced to this form, but we have maintained the original 
form to maintain consistency with the general form of the 
similar expressions elsewhere that do not reduce in this 
fashion. 

The probability that a least six Sid Bays can see this specific 

triangle, in this notation, is (1 - SI )7 + 7 SI (1 - SI 1‘ . 
This is the probability that six or seven Sid Bays can see one 
specific triangle without regard to whether or not that 
particular triangle is actually available. This expression 
depends only on the state of the Sid Bay. There are four 
triangles. When it is known that exactly one triangle is 
available, then the probability that a specific triangle, say 
triangle 3, is operational is 1/4. Thus, given that one 
triangle is available, the probability of E3 is 

When this is substituted back into the expression for the 
union of four events, it is multiplied by 4, and so the factor 
of 0.25 disappears yielding exactly the same expression 
found earlier with S replaced by Q. 

When only one triangle is available, the intersection terms in 
the expression for the union are all zero. When only one 
triangle is available, it is obviously not possible to see 
triangles 1 and 3 for example. Therefore 

P(El n E3) = P(E1 n E2) = 0. 
Similarly, the probabilities of the higher order intersections 
are all zero. With one triangle available, the probability of 
the union is: 

Two Triangles Available-As before, we define (1 - $1) to 
be the probability that a given Sid Bay can see one specific 
triangle. The probability that six or seven of the Sid Bays 
can see this one specific Triangle, say triangle number 3, is 

However, this assumes that triangle 3 is functioning. This is 
a conditional probability. We need to multiply by the 
probability that this particular bay is indeed functioning 
given that two triangles of the four are working. This 
probability is 0.5. Thus, the correct expression to use in the 
equation for the probability of the union is 

P(E3) = [(I - 4)’ + 7S1 (1 - 

P(E3)  = 0.5[(1- S,)’ + 7S,(1- 
Recall that by symmetry, P(E,) = P(E2) = P(E,) = P(E,). 

Next, we need expressions for the intersection terms. 

If only two triangles are available, then there is no way that 
three or four triangles can be seen by even one Sid Bay, 
never mind six or seven. Therefore, the triple and quadruple 
intersection events have zero probability (given that only 
two triangles are available). That is, 

P ( E , n E 2 n E 3 ) = P ( E 1  nE,nE3nE4)=0 .  
This leaves just the double intersections to be evaluated. 

A Siderostat Bay can see two triangles only if all four 
SBBLs are working. Let (1 - s,) be the probability that a 
given Sid Bay can see two specific triangles: 

(i-s,) = ( 1 - 4 ) ( 1 - ~ 3 ~ .  
Note that this is just an expression about the state of he Sid 
Bay; it does not include the probability that triangle 1 and 2 
are actually operational. That will be factored in later. The 
probability that six or seven Sid Bays can see these two 
specific triangles is 

(1 - s, 1’ + 7s, (1 - s, i6 
However, this is only part of the term P(E, n E,) . 

Event El is six or seven Sid Bays being able to see triangle 1 
and event E2 is six or seven Sid Bays being able to see 
triangle 2. The intersection of these two events, (E, n E,), 
also occurs when five Sid Bays can see both triangles, the 
sixth Sid Bay can see triangle 1 and the seventh Sid Bay can 
see triangle 2. At first, this particular term eluded us and the 
closed form solution gave different results from the Monte 
Carlo model. By carefully enumerating states for a test case 
with fewer Sid Bays, we were able to identify the missing 
term. 

The probability that five Sid Bays can each see two specific 
triangles is 

The two extra Sid Bays that can see only one triangle are in 
a state such that their Sid Bay Residual Elements are 

(1 - s,y. 



operational and one SBBL has failed. For one bay, the 
probability of being in this particular state is 

( i - ~ p , ( i  = P,)~ 
There are two Sid Bays in this state, so this term will be 
squared. 

Next we need to understand the combinations. There are 
five Sid Bays able to see two triangles. The number of such 
combinations is 7 taken 5 at a time, or 7!5!/  2! = 21. 
Then there are two Sid Bays each able to see one triangle. 
There are 2 combinations. The extra term is thus 

21(1-S2)5 x2[(1-Ps)PB(1-P,)3]2 

The overall expression for P(El n E*)  is 

(1 - S, )’ + 7s2  (1 - s2)‘ + 2 i(1- s,)’ 2[(1- pS )P, (1 - P ~ ) ~  1’ 
given that triangles 1 and 2 are actually operational. . 
When two triangles are available, it will be two specific 
triangles depending on which Kite Beam Launcher has 
failed. There are six different ways of selecting the two 
particular triangles, and each is equally likely to occur. 
Thus, given that there are two random triangles available, 
P(E, n E,) = 
1 -{(I - S,)’ +7S2(1 - S2)6 +42(1- S2)5 ~ [ ( l -  P,)P,(l- P,)’I2}. 
6 
Recalling that P(E,nE,nE3) and P(E,nE2nE3nE4) are 
zero, and substituting back into the expression for the 
probability of the union of the four events Ei, we have the 
probability that at least six Siderostat Bays can all see at 
least one of the available triangles, when two triangles are 
available, is 

P(E, v E2 v E, v E,) = 

4x O.S[(l-S,)’ +7SI(1 

1 
6 

6x-((l-S,)’ +7S2(1-S,)6 +42(1- S,)’ ~ [ ( 1  - ~ S ) P , ( I  - P , ) ~ ] ~ )  

= 2[(1- SI)’ + 7S, ( 1  - - 

{(1-S2)’ + 7S2(1 - S,)6 + 42(1- S,)’ x [(I - P,)P,(l- P,)’]]’}. 

Four Triangles Avuiluble- A siderostat bay can see all four 
triangles only if all four SBBLs are working. This state of 
the Sid Bay is identical to the state discussed in the previous 
section. That is, if a Sid Bay can see two different triangles, 
it can also see four triangles. The difference now is the 
number of triangles available. We can reuse several of the 
results from that section. 

As before, the probability that a Sid Bay is in a state such 
that it can see a specific triangle, say triangle 3, is (1 - $1). 
The probability that a least six Sid Bays can see this specific 

triangle is (1 - s1)7 + 7 Sl(1- sl)6 . Now, however, all 
four triangles are available. Therefore, the probability that 

six or seven of the Sid Bays can see a particular triangle just 
equal to this expression: 

P(E1) = P(E3)  = (1 - s1)7 + 7 sl (1 - s1)‘. 
Continuing to recycle expressions from above, the 
probability that a Sid Bay can see two specific triangles is 

( 1 - s 2 ) = ( 1 - ~ ~ ) ( 1 - ~ ~ ) , .  
Continuing as above, we arrive at the same expression as for 
when two triangles were available but this time, given that 
all four are operational, the probability that any particular 
two are operating is 1 so there is no extra adjustment.: 
P(E, n E,) = 

(l-S,)’ +7S,(1-S2)6 +42(1-S2)5[(l-P,)PB(1-PB)3]2 
As mentioned much earlier in the paper, there is no way for 
a Sid bay to be able to see exactly three triangles. If it can 
see three triangles, then it can also see four triangles. A 
consequence of this is that when four triangles are 
available, P(El n E2 n E3) = P(El n E2 n E3 n E,). 

Let (1 - S,) be the probability that a given Siderostat Bay 
can see all four triangles: 

(1 - s,) = (1 -&)(i- P,), = (1 - s,). 
This is identical to the expression for seeing two triangles 
because everything in the Sid Bay must be operational to see 
two different triangles. The probability that six or seven of 
the Sid Bays are in this state is: 

P(E, n E 2  n E 3 )  = P(El n E 2  n E ,  nE,)  = 

(1 - s, + 7s4 (1 - s, y. 
The various expressions are substituted into the expression 
for the union to yield the probability that at least six 
Siderostat Bays can all see at least one of the triangles, when 
all four triangles are available: 

This expression is simplified and s, is replaced by s, : 

The analytical expression for SIM Classic optical 
interferometer reliability when all siderostat bays must use 
the same triangle is then given by: 



where the square bracket terms are replaced by the 
appropriate term for the number of triangles specified, 
yielding the following expression: 

Figure 8 illustrate a simple case in which the component 
failure rates were all set to the same value. This value was 
then varied over the range 0 to 2%. The overall system 
reliability was calculated using the closed form solution for 
the case when all Sid Bays must use the same triangle and 
when the Sid Bays can use any triangle. As expected, the 
reliability is a little lower with the more restricted constraint 
that all Sid Bays must use the same triangle. However, if 
one imposes this constraint, it does not drastically reduce the 
overall system reliability. 

96% 
0% I % 2% 

Component Failure Rate 

I- -A - SAME TRIANGLE ---)---ANY TRIANGLE I 

In order to use more than one triangle at the same time, the 
project would have to perform some additional analysis and 
develop algorithms, along with testing and verifying this 
approach. Depending on how risk averse the project wishes 
to be, and based on available resources, one might decide 
not to perform this additional work, and thereby save some 
resources for use elsewhere. There is a good chance that the 
entire mission could be performed never needing the 
capability to use more than one triangle. If, during the 
mission, the unfortunate situation were to arise that six Sid 
Bays could not simultaneously interrogate the same triangle, 
then one would have to perform the analyses and develop 
the necessary algorithms at that point in order to continue 
the mission. Throughout the mission, if some components 
failed but the system were still operational, then the model 
could be exercised setting the failure rate to 100% for the 
failed components. If the results at that point indicate a 
greater difference between using one triangle and any 
triangle, then one might initiate the extra work to develop 
the capability to use any triangle. 

6. MONTE CARLO SIMULATION USING EXCEL 
One of the authors (George Fox) has developed some Excel 
add-ins and macros for use in performing Monte Carlo 

Figure 8 System Reliability Sensitivity to Component 

simulations using Excel. He developed a method of 
representing interconnections among elements of a system 
graphically at the same time as representing the probabilistic 
relations among the elements. This pseudo intuitive 
approach makes it easier to understand the functioning of the 
system. The graphical representation is not essential. One 
could use the relationships without adding on the layer of 
graphical representation. 

Failure Rates 

For the SIM model, we represent each block as a logical 
entry in the spreadsheet with a True value (1) representing 
an operational block, and a False value (0) representing a 
failed unit. The built-in Excel RAND( ) function is used to 
generate random values in the range (0,l). In the cell, the 
random value is compared with a failure probability stored 
in a different cell. If the random value is lower than the 
probability of failure, then the cell for that block is marked 
False. Otherwise it is marked as True (operational). Some 
cells are used to represent aggregates of elements. These are 
considered operational only when the appropriate relations 
among the sub blocks are satisfied. This allows very 
complex relations to be represented. Most of the 



commercially available reliability assessment tools allow 
parallel combinations of series elements, but do not easily 
allow the relations among Sid Bays and the Metrology Kite 
to be represented. Using the Excel-based approach, these 
relationships were modeled easily. 

Each time the spreadsheet is recalculated, the random 
function returns a different value between 0 and 1. In a 
sense, each time the spreadsheet is recalculated, one has an 
instance that represents a complete occurrence of the SIM 
mission. By running the model many times (we chose 
10,000 samples) one can estimate the reliability of the entire 
system. The greater the number of samples, the greater will 
be the precision in the final result. Of course, the accuracy 
depends upon the accuracy of the assumed component 
reliabilities. In our case, we did not have realistic values. 
Instead, we used the model parametrically and varied the 
input component reliabilities to investigate sensitivities and 
to compare different arrangements of the major elements. 
We also wanted to compare the results with the analytic 
method to help verify both the analytic approach and the 
Monte Carlo approach. Agreement between the two does 
not guarantee that there are no errors, but if there are 
significant differences, then it is clear that at least one of the 
models is incorrect. 

The add-ins automate the ability to run the model a large 
number of times. They also allow desired cells to be 
monitored and tabulated in a separate sheet in the Excel file. 
They also include the ability to display the results in a 
consistent way. 

For SIM Classic, once the basic model was assembled in 
Excel, it turned out to be relatively easy to modify which 
condition of the Metrology Triangles was considered 
operational. In fact, both arrangements were assessed 
simultaneously in separate cells of the same model file. This 
is in distinct contrast to the additional effort required during 
development of the closed-form solution. It took weeks to 
develop the modification going from allowing any Sid Bay 
to use any available triangle to restricting all Sid Bays to use 
a common triangle. In the end, the results agreed to three 
significant digits for both the analytic and the Monte Carlo 
models for both constraints. 

MCTool 

The custom add-in developed by George Fox is named 
MCTool (Monte Carlo Tool). It includes many capabilities, 
of which only a few were used in the current effort. For 
instance, one can select among a number of different 
probability distribution functions for random variables. In 
the SIM modeling, we just used uniform distributions 
between 0 and 1. During the simulation, results for several 
variables can be collected and plotted or tabulated in 
different ways. MCTool includes several standard formats, 
but the data can easily be manipulated using general Excel 
capabilities to generate customized views if desired. 
Random variables are named starting with “RV” to denote 
variables that the tool will monitor and collect 

Simple Cells-If a fundamental element - such as a Sid Bay 
Beam Launcher (SBBL) for SIM - has a simple probability 
of failure rate, say 1% for the mission, then that value (0.01) 
is entered into a cell in Excel. It is convenient to create a 
table showing the various simple elements along with their 
values. Figure 9 shows a sample from the SIM Classic 
model. 

The lines labeled P, S, Q, R are the SBBLs for each Sid 
Bay. We assumed that all SBBLs are identical and have 
equal failure rates. If there were some differences among 
the various SBBLs, then different entries could have been 
used in the table. The values in this table are all static since 
they represent the end-of-mission reliability for these 
elements, but in a more complicated model, these might 
change for different phases of the mission. 

Elsewhere in the spreadsheet there is a separate cell for each 
of the SBBLs. Each of these contains an equation similar to 
this: =IF(RAND()<PG,O, 1). P6 is the cell in the table above 
for one specific SBBL. Every time the spreadsheet is 
updated, a different random variable is returned by the 
RAND function. This value is compared with the value in 
P6, in this case 0.01. Ninety-nine percent of the time, the 
random variable will be greater than 0.01 and the value of 

PrpBL failure} Sid Bay #I Sid Bay #2 Sid Bay #3 Sid Bay #4 Sid Bay #5 Sid Bay #6 Sid Bay #7 , 
P 0 01 0 01 0 01 0 01 0 01, 0 01 0 0 1 ,  
S 0 01 0 01 0 01 0 01 0 01 0 01 0 01 
Q 0 01 0 01 0 01 0 01 0 01 0 01 0 01 
R 0 01 0 01 0 01 0 01 001,  0 01 0 01 

Pr(SBL failure} Sid Bay #I Sid Bay #2 Sid Bay #3 Sid Bay #4 Sid Bay #5 Sid Bay #6 Sid Bay #7 
Rest of Sid Bay 0 01 0 01 0 01 0 01 0 01 0 01 0 01 

Pr{Beam Combiner failure} B C #I B C #2 B C #3 B C #4 
0 01 0 01 0 01 0 01 

Figure 9 Sample Table of Reliability Values (Specific Values are not necessarily representative of real hardware) 



the cell will be set to 1. One percent of the time, the random 
number will be less than 0.01 and the cell will be set to 0 
meaning not operating. The add-in automates the repeated 
updating of the spreadsheet and monitoring of which cases 
correspond to failed systems. 

Series Cells-When two or more simple cells must all be 
operating for some portion of the system to be considered 
operational, then the cells are said to be in series. If any 
device represented by the cell fails, then the combination is 
considered failed. In Excel, this can easily be incorporated 
into a cell representing the combination by using the AND 
function. Here’s an example from the SIM Classic 
reliability model spreadsheet: 
=IF(AND(TCC-l,TCC-2,TCC-4,KBL-12,KBL-24,KElL- 

This is a cell that represents Kite Triangle number 2. For 
this particular triangle to be considered operational, the 
three specific triple comer cubes and the three specific kite 
beam launchers must all be working.. Note that the cells are 
named and these names are used rather than cell references 
using row and column designators. For instance, KBL-24 is 
really cell J19 in the spreadsheet. This cell represents the 
beam launcher measuring the diagonal member of the kite 
running between TCC-2 and TCC-4. 

14),1,0) 

An alternative way of representing this series condition is 
simply to multiply the individual cells. The cells are all 
either 0 or 1. The product of the cells will be 0 if any of the 
individual cells is 0. The combination is only 1 if all the 
series elements are 1. The choice is a matter of style and 
personal preference. Using names can help one to 
understand the functionality when editing the spreadsheet, 
especially for complex combinations. 

Parallel Cells-When any one of two or more simple cells 
can be operating for some portion of the system to be 
considered operational, then the cells are said to be in 
parallel. In Excel, the OR function can be used. Here’s an 
example that could represent the situation in which any of 
the four triangles is operational: 
=IF(OR(Tri-A,Tri-B,Tri-C,Tri-D), 1,O) 
As before, the cells are named and the names are used in the 
equation rather than explicit references to the cell row and 
column. 
An alternative approach is simply to sum the cells in 
parallel. The sum can only be zero if all the parallel 
elements are zero (failed). Excel interprets zero as false and 
any other value as true. If the sum is greater than zero, then 
at least one of the parallel elements is operational. 
However, it is probably wise to normalize true to be equal to 
one. Therefore, rather than using the straight sum of several 
parallel elements, one could test for a positive sum and set 
the result to one when satisfied and to zero otherwise. For 
example, =IF(SUM(Tri_A,Tri-B,Tri-C,Tri-D)>O, 1,O) will 
achieve this objective. 

N of M Operational-SIM has a single point failure 
tolerance failure. No single failure is allowed to cause 
failure of the entire system. However, in some situations, 
there are additional elements, and often two or more must 
fail before a larger system is taken down. If a larger part of 
a system can operate whenever N elements are operating out 
of a total of M, then one can simply sum the cells 
representing the elements and the larger part of the system 
will be operational whenever the sum of the elements is 
equal to or greater than N. The larger part of the system 
could be represented by =IF(sum(range)>=N, 1 ,O). 

Complex Cells-Some cells in the model refer to 
combinations of cells in a more complicated manner than the 
situations discussed above. Here’s an example 
=IF( OR( V40>=6,V42>=6,V44>=6,V46>=6), 1,O) 
The four cells referenced contain the number of Sid Bays 
that can see a particular Kite Triangle. For instance, cell 
V44 is simply the sum of the number of Sid Bays that can 
see triangle 4-3-2. If this sum is greater than or equal to 6,  
then the front end of the interferometer can be considered 
operational under the constraint that all Sid Bays must share 
a common triangle. There are additional “downstream” 
elements that must also be operational for the interferometer 
to be considered functioning. By “front-end elements” we 
are basically referring to the first elements that star light 
encounters as it progresses towards the detectors inside the 
Beam Combiner. 

Fairly complex relations among elements can be constructed 
by developing appropriate intermediate cells and combining 
them to represent the correct operation of the overall system. 

Model Visualizations-the discussion above of the Excel 
modeling describes the construction of the formulas entered 
into the cells of the spreadsheet to represent the reliability of 
the system. Like any program, debugging is required. That 
is one of the reasons it is recommended to name the cells 
descriptively and use the names rather than direct cell 
references. This especially holds for large complex models. 
A further refinement that increases the ability to understand 
the model is to color the cells representing different 
elements different colors and to draw lines connecting 
elements to represent the connectivity in the system being 
modeled. This is even more helpful if the layout 
corresponds to the physical layout although this is not 
essential. One could start with a block diagram and lay out 
the elements according to the block diagram instead of the 
physical arrangement of the elements. Text entries in 
adjacent cells can be used as labels. This further decreases 
the chance of making errors during the construction and 
debugging of the model. A segment of the model 
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Figure 10 Portion Representing Metrology Kite of SIM 

Figure 10 illustrates the techniques suggested. The figure is 
a screen capture of the portion of the Excel spreadsheet 
representing the External Metrology Kite. The four yellow 
cells represent the TCCs. Each of the TCCs is labeled by a 
simple number 1, 2, 3 ,  4. One could as easily have used 
TCC-1, TCC-2, etc. The green cells represent the six 
KBLs. These are labeled A though F. The values in all of 
the cells happen to be 1 indicating that all elements are 
operating. For a particular instance, one of more of these 
might be zero indicating failure of that component. One can 
press the F9 function (on a PC) to force the spreadsheet to 
recalcualte. This cause a new set of random numbers to be 
generated. Sometimes this can be helpful during debugging, 
because the eye is sometimes notices patterns that would 
otherwise be difficult to deduce. For instance, if all the 
TCCs seem to fail at the same time, then one might suspect 
that the logic is not set up correctly and perhaps all cells are 
referring to a common cell instead of separate cells. 

Reliability Model in Excel 

The diagonal lines in the figure represent the laser beams 
connecting the TCCs. Each passes through a cell 
representing the corresponding Kite Beam Launcher. These 
lines are merely graphical elements drawn on the 
spreadsheet. They serve only to make it easier to understand 
the connectivity among the TCCs and the KBLs. 

The thin red lines slanting down and to the right illustrate 
the laser beams connecting the TCCs to one Sid Bay. It 
would be overwhelming to show all the connections among 
the TCCs and all seven Sid Bays. However, the link to one 

Sid Bay makes it easier to develop the correct logic linking 
the operation of the Sid Bays and the Kite Triangles. In 
fact, once the equations are developed for one element, they 
can often be copied to the cells representing the other 
elements. Using absolute references and mixed references 
can be very helpful in performing this task. If one has never 
explored absolute and mixed references, it is recommended 
that one do so if one wishes to develop Excel models of any 
complexity. The investment of the time necessary will be 
repaid many times when an equation is simply dragged 
across rows and columns instead of having to enter each cell 
manually. 

Figure 11 shows an adjacent portion of the spreadsheet. The 
red diagonal lines connect to the Metrology Kite illustrated 
in Figure 10. The pale blue horizontal boxes each contain 
seven boxes corresponding to the seven Siderostat Bays. 
The four rows contain the operational state of the four Sid 
Bay Beam Launchers (SBBLs) in that Sid Bay. These cells 
contain simple random variables. 

Below the pale blue boxes are four green boxes, which will 
be described shortly. To the left of the green boxes are four 
pink cells. Each of the pink boxes contains the state of one 
of the four Met Triangles. A triangle is considered 
operational if its three TCCs and the three KBLs connecting 
these three TCCs are all operational. That is, the six 
elements are in series and are thus represented using the 
AND() function as discussed above. 

The four green rows each correspond to a different Met 
Triangle. A one in a cell indicates that the specific Sid Bay 
and the corresponding triangle are operational. To the right 
of the green boxes is a cell which sums the number of Sid 
Bays that can see the triangle corresponding to that row. If 
the sum is six or more, then those operating Sid Bays can all 
see a common triangle. Below the four sums, a cell checks 
to see if any triangle is in this state. This cell is labeled 
“Case 2: All Sid Bays must use the same Triangle.” When 
this cell contains a one, then at least one triangle can be seen 
by at least six Siderostats. This is the situation for which it 
was quite difficult to develop a closed-form solution. 
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Figure 11 Portion of Spreadsheet representing Combinations of Sid Bays and Kite Triangles 

1-4-3 1 0 

Below the green boxes is a row of seven cells. Each of these 
cells tests if the Sid Bay above it can see any triangle. To 
the right of these seven boxes is a cell which checks to see if 
at least six Sid Bays are in this state. This cell is labeled, : 
Case 1: Any Sid Bay can use any Triangle.” It can be seen 
that both Case 1 and Case 2 can be tested at the same time. 
The subroutines contained in the MCTool add-in count the 
number of instances out of the 10,000 trials for which the 
system is in this operational state. 

1 1 1 1 1 1 6 

Above the pale blue boxes, there is a row of cells entitled 
“Rest of Sid Bay.” This is a simple random variable 
denoting when the elements in series with the Sid Bay are 
operational. The green boxes below indicating the status of 
the Sid Bays includes a link to the corresponding pink box 
with the Rest of Sid Bay Elements corresponding to that Sid 
Bay. 

0.00 I 0.9990 I 0.9989 

Above the pink boxes are four blue cells labeled “Beam 
Combiner.” These cells contain simple entries for the four 
beam combiners. To their right, a cell tests if three or more 
beam combiners are operational. Since the beam combiners 
are in series with the rest of the system (by way of the 
Switchyard) this cell is simply multiplied into the final 
operational state of the system. Since there are the two 
cases being run simultaneously, they are multiplied into each 
of the summary cells corresponding to a fully operational 
system. 

0.0001 

7. COMPARISON OF RESULTS FROM MONTE 
CARLO MODEL AND CLOSED-FROM SOLUTION 

0.01 I 0.9984 I 0.9983 

In order to confirm that the different modeling approaches 
were consistent, we evaluated the overall system reliability 
using the Monte Carlo approach and using the closed-form 
equations. The input reliability values for the various 
elements were varied over a wide range. 

0.0001 

Table 1 Comparison of Closed Form Solution and Monte 
Carlo Simulation with 10,000 instances 

0.03 I 0.9939 I 0.9928 

System Reliability 
P(ABC) I Closed Form I Monte Carlo I Difference 

0,001 1 

I (10,000) I 

0.04 I 0.9900 I 0.9897 0.0003 

0.02 I 0.9967 I 0.9970 I -0.0002 

0.06 
0.07 

0.9791 
0.9723 

I 0.05 I 0.9850 I 0.9853 I -0.0002 I 

0.08 
0.09 
0.10 

0.9646 
0.9561 
0.9468 0.9484 -0.0016 

Table 1 shows a particular comparison. The failure rate for 
the Astrometic Beam Combiner (ABC) was varied from 0 to 
0.1 while the failure rates for the remaining elements in the 



system were held constant. The agreement between the two 
models is about what would be expected based on the 
10,000 random instances used. Table 2 lists the nominal 
values used in the Monte Carlo modeling. This table lists 
the constant values used for each of the parameters while the 
others were varied parametrically one by one. These values 
should not be construed as being representative of actual 
failure rates for the actual flight hardware. 
-~ ~ 

Reliability Model Element I Pf 
Triple Corner Cube I 0.0005 
Residual Siderostat Bay Elements I 0.001 
Kite Beam Launcher I 0.01 
Siderostat Bay Beam Launcher I 0.01 
Astrometric Beam Combiner I 0.02 

Table 2 Nominal Failure Rates Used in Monte Carlo 
Modeling 

8. CONCLUSION 
High-level (coarse) reliability models of the Space 
Interferometry Mission (SIM) have been developed. For 
two operational constraints of the SIM Classic 
configuration, closed form relations were developed. Monte 
Carlo models were also developed using Excel. The two 
models agree to the level expected for the number of 
instances run in the Monte Carlo model (10,000). The 
derivation of the closed-form solution has been derived in 
some detail. The use of Excel as a tool for modeling 
probabilities has also been described in significant detail. 
The Excel technique is more easily extended than the 
closed-form approach. 
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