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Abstract 

In this report we provide a vectorial derivation of the equations of motion 
characterizing the dynamic behavior of both ideal and non-ideal (e.g., including 
anisoelastic effects) vibratory micromachined gyroscopes. The derivation pre- 
sented here utilizes the basis-free Newton-Euler approach (viz., the balance of 
angular momentum) rather than an energy based formulation. Our approach 
offers the following advantages: (1) It leads to an explicit set of dynamic equa- 
tions without requiring excessive symbolic manipulations by the analyst, (2) 
The resulting nonlinear dynamic model can be readily linearized for use in con- 
troller/estimator design, (3) Our derivation provides maximal physical insight 
into the dynamic be vior of micromachined rate sensors, (4) The Newton- 
Euler approach ca can e readily extended to model multibody effects such as 

ior of angularly vibrating microgyros in this report our formulation is equally 
valid for linearly vibrating microgyros. 

- 
rotor/housing dynamic & coupling. Although we emphasize the dynamic behav- 

1 Introduction 
High performance gyroscopes are commonly used devices for measuring attitude and 
angular velocity in modern aerospace, vehicle, and robotic systems. The evolution 
of gyroscope technology (and more broadly inertial navigation technology) is an in- 
teresting topic in its own right - See [ll] and [20] for a discussion and an extensive 
list of references. One of the earliest implementations of a device capable of sens- 
ing the angular rate of a rotating body (viz., the Earth) dates back to  1851 and 
Foucault’s pendulum [13], [17]. In modern inertial sensor systems gyroscopes are 
typically classified as either rate gyros or rate integrating gyros [14]. In this report 
we will concentrate on the analysis of rate gyros; i.e., gyros that directly measure 
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the angular rate of a rotating body about a specific axis. Gyroscopes may be further 
categorized by their gross physical dimensions.' For example, the prototypical macro 
rate gyro consists of the classical single-axis deflection gyro (found in 3-axis stabi- 
lized platforms) incorporating a massive spinning rotor. The dynamic characteristics 
of macro rate gyros are well established - The reader should consult [13], [14] for fur- 
ther information. Alternately, recent MEMS (Micro-Electrical-Mechanical-System) 
technology has led to the reality of silicon-based monolithic micromachined (or mi- 
cro) devices becoming viable low cost alternatives to their macro counterparts in a 
variety of lower performance applications. This revolution has increased the need to 
understand not only the dynamic behavior of these MEMS devices but also to develop 
the necessary architecture required to implement functionally integrated microgyro 
based sensor systems. 

In this report we concentrate on developing dynamic models of microgyro devices 
for use in design, performance evaluation, and control. Specifically, we present a first 
principles derivation of the equations of motion for the important class of sensors 
known as angularly vibrating rate microgyros. The derivation given here utilizes the 
vectorial (basis-free) Newton-Euler approach (balance of angular momentum) rather 
than an energy based formulation as done in [9], [ll], [21]. Our approach leads to an 
explicit set of dynamic equations without requiring excessive symbolic manipulations. 
Further, the derivation allows maximal physical insight into the dynamic operation of 
micromachined rate sensors and allows the analyst to naturally incorporate multibody 
effects (as well as other parasitic effects) into the analysis. 

2 Dynamics of the Angularly Vibrating Rate Gy- 
roscope 

In this section we derive the equations of motion of a generic vibrating angular rate 
microgyro. The dynamic analysis of rotational vibratory gyroscopes is also discussed 
in [2], [9], [ll], [19], and [21]. Before we begin developing the equations of motion 
of the microgyro we present a qualitative overview of the operation of the device. 
The configuration of the rate gyro under study is shown in Figure 1. The rotor is 
angularly oscillated about the +-axis (drive-axis, normal to the plane of the page) 
resulting in an oscillating angular momentum vector. The suspension system of the 
rotor consists of four cantilevered beams connecting the rotor structure to the gyro 
platform/housing assembly. The beams provide mechanical support and allow small 
angle flexure (via torsional motion) of the rotor relative to the platform about each 
axis2. If the spacecraft is rotating about the y,-axis (input-axis) with some nonzero 

'See [l] for a well written overview of both macro and micro vibratory rate gyros. 
2The JPL angular rate microgyro structure is based on a similar configuration [4],[5],[12],[18],[21]. 

The microgyro consists of a four-leaf clover shaped plate rigidly coupled to a central mass element 
(called the post) mounted orthogonal to the plane of the clover leafs. The entire structure is sus- 
pended by four thin silicon cantilevered beams which provide mechanical support and restoring 
force/torque capability for the structure. The post axis is the input axis, and the drive and sense 
axes lie in the clover leaf plane. The dynamic model derived in this report can be readily applied 
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Figure 1: Angular Vibratory Rate Gyro 

angular rate R, (i.e., the rate to be sensed), an oscillating Coriolis moment is de- 
veloped across the transverse x,-axis (sense axis). This (fictitious) moment causes 
the rotor to be angularly deflected about the sense axis. The amplitude of the re- 
sulting angular deflection about the sense axis is directly related to  the angular rate 
of the spacecraft about the input-axis. The description of gyro operation given here 
assumes that the gyro is operating in open-loop mode. The gyro can also be operated 
in a closed-loop mode that utilizes force rebalance along the x - p and y - p axes; 
In this mode of operation, rather than measuring the deflection about the sense axis 
directly, a torque is applied about the sense axis to null the Coriolis induced motion. 
The magnitude of the rebalancing torque is then directly related to the angular rate 
of the spacecraft. 

2.1 Vectorial Equations of Motion 
In the sequel the following reference frames shown in Figure 1 will play an important 
role: 

0 FI - A suitable inertial frame of reference. 

0 F p  - The platform reference frame rigidly attached at the center of mass of 
the platform and rotating with the platform. In this analysis we will assume 
that relative motion between the platform and the vehicle is negligible - As a 

to the specific geometry of the JPL clover-leaf gyro configuration by choosing the mass distribution 
accordingly. 
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result, the platform frame also describes the motion of the spacecraft (i.e., the 
platform frame can be taken equal to the spacecraft's body fixed frame FB). 

0 FR - The rotor frame rigidly attached at the mass center of the rotor and 
rotating with the same angular motion of the rotor. The rotor can perform 
oscillations about the Z R  axis. Note from Figure 1 that when the angular dis- 
placements 8, = 8, = 0, FR is aligned with Fp. This corresponds to the initial 
state of the device before a spacecraft rate induces rotational motion about the 
X, (resp. Yp) axis. Here we assume that the center of mass of the rotor and the 
platform coincide at point C. For simplicity we assume that the center of mass 
of the gyro system (rotor + platform + suspension) is also located at point C. 

All dynamic coupling between the spacecraft and the microgyro is assumed to 
arise from the gross motion of the spacecraft; Le., the gyro motion is dynamically 
coupled to the vehicle but not vise-versa3. As a result, the motion of the spacecraft 
will be taken as prescribed in this analysis. Furthermore, by the assumption that 
there exists no relative motion between the platform and the vehicle the motion of 
the platform can also be considered prescribed and the platform angular velocity is 
taken equal to the angular velocity of the spacecraft (i.e.> the rate that we wish to 
sense). The beams making up the rotor suspension assembly are modeled as lumped 
(i.e., massless) torsional spring/dashpot elements in the sequel. As a result the rotor 
suspension does not contribute angular momentum to the system. 

Applying the balance of angular momentum [8] about the center of mass of the 
system (= center-of-mass of platform = center-of-mass of rotor) we find 

where 

Here g denotes the total angular momentum of the system (=rotor + suspension + 
platform) about the system center-of-mass, g~ denotes the angular momentum of 
the rotor about the system center of mass, and I?s denotes the angular momentum 
of the suspension about the system center-of-mass5. Also, JR denotes the inertia 
dyadic of the rotor about its center of mass, is the angular velocity of the rotor 
relative to FI, and EA? denotes the resultant moment vector acting on the rotor. 
The symbol e represents dyad-vector multiplication [8]. Following the notation of 

3Note that this assumption does not always hold for the analysis of macro-rate gyros incorporating 

4For our purposes the concept of a prescribed motion can be best thought of as motion resulting 

5As the motion of the platform is taken as prescribed l?p is not included in the analysis. 

a massive spinning rotor. 

from the action of a perfect (infinite bandwidth) control system. 
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[lo], $(e) denotes the time rate of change of a vector as seen by an observer rigidly 
attached to frame of reference A, denoted FA. In the analysis of a system involving 
multiple reference frames (undergoing arbitrary relative motion) the analyst must 
carefully distinguish between the time rates of change of vector/tensor quantities as 
seen by observers in different frames. Specifically, given a pair of reference frames FA 
and FB undergoing arbitrary relative angular motion, the time rate of change of a 
vector as seen by an observer rigidly fixed to FA (denoted y) is related to the 
time rate of change of the same vector as seen by an observer rigidly fixed to FB 
(denoted y )  via the transport theorem 

+AdB X Q " d o  - B d d  
d t  d t  ( 5 )  

where A ~ B  denotes the angular velocity of frame B in (or relative to) frame A. For a 
detailed derivation of the transport theorem see [lo] or [8]. 

Applying the transport theorem to the balance of angular momentum (1) we find 

+IGP x a 'dl? - P d a  
d t  d t  

where Idp  denotes the absolute angular velocity of frame P. Applying the transport 
theorem a second time to dt results in p d f l  

+ P d R  x 2 ' d l?  - RdI? 
d t  d t  (7) 

where PdR is the angular velocity of frame R in frame P. Note that two applications 
of the transport theorem are required since FR is rotating relative to Fp and Fp is 
rotating relative to FI. 

Substituting (7) into (6) and rearranging yields 

where in (9) we have invoked the angular velocity addition theorem (see [lo]) 

I d R  =I 2 P  +P 2 R  

Equation (9) can be further simplified as follows 



However, since the rotor is assumed rigid (i.e., does not suffer any deformation) and 
FR is rigidly attached to the rotor structure 

R d J R  = o  
d t  

Substituting (9), (12)-(13) into (6), it follows that the resulting vectorial of motion 
are expressed concisely as 

It is also important to observe from applying the transport theorem to 'GR  that 

Some final comments on the Newton-Euler formulation are in order. For simplicity, 
we assumed that the rotor suspension is massless and have neglected all dynamic 
coupling between the platform and the rotor in this analysis. However, to obtain a 
more realistic dynamic model multibody coupling effects should be considered. In the 
field of multibody dynamics [8] the Newton-Euler method is the preferred method to 
formulate the equations of motion of interconnected systems of rigid-flexible bodies. 
As a result, our framework can be readily extended to incorporate platform/rotor 
multibody coupling effects. 

2.2 
The vectorial equation (14) along with the vectorial statement of the angular veloc- 
ity relationship (10) and its time rate of change (16) provide a concise and exact 
characterization of the non-linear equations of motion of the microgyroscope6. 

Once a basis-free (i.e., vectorial) statement of the equations of motion of the sys- 
tem has been determined the analyst has complete freedom to express the equations 
in component form by resolving them into any reference frame of interest. In problems 
involving a single rigid body the natural frame to express the dynamics in component 
form is a body fixed frame rigidly attached to the body and rotating with the body. 
In the analysis of the microgyro this frame corresponds to FR7.  To this end, we will 
seek a coordinate representation of (14) in FR. As intermediate steps we must first 

Representation of the Equations of Motion in F' 

6As discussed in the next section a kinematic differential equation relating to the time rate 
of change of some specific parameterization of the rotation group (e.g., Euler angles, quaternions, 
etc.) is also required to completely characterize the state of the system. 

7As remarked above, FR has the property that the representation of JR in this frame is constant. 
However, restoring moments from the elastic beam flexures are more naturally expressed in Fp. 
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I d I j R  
determine the representations of 'GR,  7, JR and 

As a first step in expressing the equations of motion in component form resolved 
in FR we must describe the orientation of .FR relative to Fp. Here the rotation matrix 
C : Fp H FR describing the attitude of FR relative to Fp is parameterized via Euler 
angles - However, other parameter alternates are possible [8]. Consider the following 
(1,2,3) Euler sequence'' 

2 in .FR' 

where the principal rotation matrices are defined by 

0 
cOs(0,) sin(e,) 

o -sin(0,) cos(0,) 

1 
0 1  1 

cos(0,) 0 - sin(0,) 

sin(0,) 0 cos(0,) 
1 0 C,(QY> = (19) 

The Euler angles (Ox, e,, 0,) correspond physically to small rotations about the sense- 
axis, input-axis, and drive axis respectively. 

Expanding out (17) in terms of the principle rotation matrices we find 

ceyce, sexseyce, + cease, -ce,s~,ce, + sexso, 
c = [ -ceyse, -~o,so,so, + cexce, ce,soyse, + sexce, ] (21) 

SOY -sO,cOy co,cOy 

where c0 = cos(0) and SO = sin(0). 
sAt this stage, we are tempted to introduce the notation to denote the coordinate represen- 

tations of an arbitrary vector 8 in a reference frame FA. Here we are making the critical distinction 
between a geometric vector and its representation in a particular reference frame .FA as a column 
vector *Q E !R3. The vector 8 is a geometric object and exists independent of any particular frame 
of reference. However, once we choose a preferred frame (viz., an orthonormal basis in linear al- 
gebra parlance) the underlying geometric vector admits a coordinate representation specific to our 
choice of frame. If we observe the same vector from a different frame (corresponding to a change 
of orthonormal basis) the coordinate representation will change accordingly. However, although the 
superscript notation makes the reference frame involved explicit in each equation, a price is paid in 
notational complexity as the equations will then contain both superscripts and subscripts; e.g. the 
angular velocity of frame R relative to frame P expressed in frame P would be denoted P ( P ~ R ) .  To 
avoid a morass of indices we omit the leading superscript from column vectors and attempt to make 
clear from context the underlying reference frame(s) involved. 

'The Euler angle parameterization of SO( 3) is particularly useful for gaining physical insight 
when small angle motion is involved. 

"First perform a rotation about the x-axis by 8, , followed by a rotation about the intermediate 
y-axis by 8,, followed by a rotation about the final z-axis by OL. 
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Once the rotation matrix C : Fp t--+ FR is known, the angular velocity of FR 
relative to Fp expressed in FR is given by (see [ S I )  

(22) 
(23) 

[PUR] := -6CT 

= -c*c,T - CZ(CYCyT)C,T - czcy(c;.c,T)cy T T  c, 
where 

Denoting 

[w] := 

[w,] := -cxc,' 
[wy] := -cycyT 
[w,] := -c,c: 

and recalling the matrix identity 

where C E SO(3)l1 we find 

or equivalently 

A straightforward calculation results in 

PWR = w, + c,wy + (CZCY)WX 

w, = [e,, 0 ,  OIT 

wy = [O, ey, OIT 
* T  

w, = [ O I  01 &I 
Combining (19)-(20) and (30)-(33) we find 

exceyce, + eyse, 
-excoyso, + Byte, 

e, + o,sey 
ceyce, so, 

- - [ -coysB, co, :] [ $ 1  
so, 0 1 8, 

= S ( 0 ) 6  

"Recall that SO(3) denotes the Special Orthogonal Group of 3 x 3 orthogonal matrices of deter- 
minant + 1. 
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* T  
where 6 = [e, 4, O,] 

expressed in Fp is given by 

and S(0) is as given in (35). 
The angular velocity of the platform F' relative to FI (the rate we wish to sense) 

I W P  = [RZ, R,, R,IT (37) 

As discussed earlier, the angular velocity (and the associated angular acceleration) of 
the platform is treated as prescribed in this analysis and is taken equal to the angular 
velocity of the spacecraft. 

Collecting the coordinate expression (37) and (36) it follows from the angular 
velocity addition theorem that 'GR = p  GR +' GP; Expressed in FR we find 

(38) I W R  = so + c I W P  

As anticipated ' w P  (i.e., the representation of I d p  in Fp) must first be transformed 
to FR via the rotation matrix C before being added to P ~ R  = S o  (which is already 
resolved in FR). 

From (16) we find that the absolute angular acceleration of the rotor dt can 
be determined by differentiating the column matrix (38) with respect to time. We 
immediately find 

I d I j R  

(39) 

(40) 

ZcjR - - S o + s G + c 1 w p + C  I P  w 

Noting C I w p  = (CCT)C ' w P  and [ P ~ R ]  = -CCT, it follows 
Zw" S O + S & [ P W " ] C I W P + C  Z P  ;I 

The resultant moment vector C G  acting on the rotor is due to two sources (1) 
restoring torques and damping due to the suspension and (2) any applied torques such 
as control torques. Here we assume that all external torques (control + restoring + 
damping) are generated in the platform frame. Here we denote the components of 

A? in 
FR is given by C M .  The representation of the inertia tensor of the rotor JR in FR 
is denoted simply as J .  

A? in the platform frame Fp as M ;  As a result, the representation of 

To summarize, the representation of the gyro equations of motion (14) in FR is 

J 'W" + ['w"] J 'w" = C M 

where 

(42) 
(43) 

ZW" = S O + C I W P  

I&" = $6 + SG - [PW"] c zwp  + c ZLjP 

Upon substituting the kinematic equations (42) and (43) into the balance of angular 
momentum (41) the nonlinear motion equations expressed in FR take the form 

J ( S O  + se - ['w"] c I W P  + c 5 . f )  + [SO + c ' W P ] J ( S O  + c I W P )  = c M (44) 
Note that the form of the resultant moment vector acting on the rotor must also be 
specified to obtain a complete description of the dynamics. 
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2.3 Small Angle Approximation of the Equations of Motion 
Although (44) provides an explicit description of the nonlinear behavior of the device 
its complexity limits its utility for controller design12. Our present goal is to simplify 
the model (44) based on a small angle expansions of the kinematic relationships 
(42) and (43). This simplified model will provide far more insight in describing the 
operation of the gyroscope and further can be easily linearized for use in controller 
design. In the small angle approximation we will neglect all coupling between the 
Euler angles (Ox, e,, e,) and their higher derivatives. However, we will retain terms 
consisting of products of the Euler angles ( Q x , Q y , O , )  and their derivatives with the 
spacecraft rates (az, R,, R,) and their derivatives. 

To this end we first develop the small angle approximation of (42). Recalling for 
small 8 sin(@) M 0 and cos(f3) M 1 we find 

The orientation of the rotor relative to the platform (21) is approximated by 

where 

As a consequence 

I e, -6, 
1 

= I -  [no] 

o -e, e, 
[no]= [ 2y ; -:I 

C ' W P  M ( I -  [ao])'wP 

1 + e , ~ ,  - e,o, 
0, + eXRz - e,R, 
R, + e,Rx - B,R, 

(48) 

(49) 

12However, it does provide an adequate truth model for testing and validating control designs. 
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Substituting the small angle approximations (47) and (52) into (42) results in 

1 e, + 0, + Rye, - R,B, 
+ R, + azex - fixe, 

e, + R, + nXey - ayex 
(53) 

The next step is to develop a small angle approximation for IwR. In general, this 
should be accomplished by first explicitly computing IwR as given in (43) and then 
invoking the small angle approximation. However, since we are only interested in 
terms consisting of products of the Euler angles and the spacecraft rates it is possible 
to determine I i j R  to the required order by directly differentiating the small angle 
approximation of IwR in (53). We immediately find 

(54) 1 ex + s2, + Oyez - %e, + R,& - nZeg 
e, + sly + s2,0, - fixe, + R,O, - axe, 
e, + 0, + fixey - fiyex + axey - Ryex 

To simplify matters we will assume that FR is aligned with the principle axes of 
the rotor. As a result the inertia matrix of the rotor J is diagonal, 

Under the principal axis assumption the rotational equations of motion (41) are 
known as Euler's equations. Expressed in FR Euler's equations take the form 

For simplicity we have introduced w =I wR where the components of w in FR are 
denoted (wx, w,, w,) and the components of Lj = W R / I  in FR are denoted (&,, Lj,, LJ,). 

Further the representation of xG in FR (i.e., C C M )  is denoted as (Adx,  Ad,, Ad,). 
Grouping together the linearized kinematic equations (53 )  and (54) we find 

w, = e, + R, + Rye, - wY 
wy = 6, + R, + R,QX - Rx8, 
w, = e, + R, + R,Q, - Rye, 

and 

W, M ex + s2, + Oyez - &ey + aye, - n,e, (62) 
wy M e, + fi, + &ex - fixe, + n,eX - ox& (63) 

(64) w, = e, + fi, + fix@, - h,ex + R,e, - Ryex 

Upon substituting (59)-(64) into Euler's equations (56)-(58) and retaining terms 
involving products of the Euler angles (and their time derivatives) with the spacecraft 
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rates (and their time derivatives) we find 

We assume that the rotor is symmetric about the x and y axes so that J,, = Jyy. 
Further, we assume that both the principal axes of elasticity and damping of the 
suspension (i) coincide with each other, and (ii) align perfectly with Fp. Under these 
assumptions the resultant moment about the center of mass of the system can be 
expressed in F p  as 

I -k,,e, - cz,6, + M: 
C"= [ -kyye, - cY,ey + M; 

-k,,e, - c,,e, + M; 

Here, the restoring torques due to stiffness and damping along axis i = (z, y, z )  of Fp 
are denoted as kiiBi and cii6i respectively, and the components of the external moment 
acting about axis i = (x, y, z )  are denoted Ad;. The restoring moments about each 
axis in (68) are decoupled due to assumptions (i) and (ii) above. Although this 
isoelastic assumption leads to a great simplification in the dynamic model, most real 
devices exhibit some form of anisoelaticity [4], [5]. We will further discuss this issue 
in the sequel. 

The components of the moment vector M resolved in FR are then 

C E M  = ( I - [ A @ ] ) E M  (69) 

= E" (70) 

Here we have neglected all products of the moments with the small angles (e,, e,, 0,) 
in (70). 

Substituting J,, = Jyy along with (68) into (65)-(67) and collecting terms yields 

": = J,,& + c,x& + k,,& + J,,fix + e,[J,,fi, + (Jyy - JZZ)O,O,] 
+(J,, - J,~)O,O, + e,(&, - J~, ) (O:  - 0;) 

M; = Jy,& + cy,dy + ky,@, + Jy,fiy + e,[J,,fi, + (J,, - J,,)a,R,] 
+(Jm - J,,)wL + Qy(J,z - JZZ)(R: - a:) 
+(J,, - J,, + J,,)o,& + e,[-J,,a, + (J,, - J,,)o,~,] - J,,R,& (72) 

+(Jzz - J y y  - J,,)f?,by + @,[-J,,fi, + (J,, - Jyy)R ,~ , ]  + J,,O,e, (71) 
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M; = J,,& + czzez + lcZ,ez + J,,CL + JzZeyfix - Jzzexfiy + ~,,n,e~ - ~ ~ ~ ~ l ~ e ~  
(73) 

The simplified equations (71)-( 73) exhibit the most important dynamic characteristics 
of the angularly vibrating microgyro. Specifically, the individual terms in (71)-( 73) 
can be categorized as follows: 

The desired Coriolis coupling terms JZ,eZs2, and - J,,eZs2,. 

0 The undesired cross axis sensitivities involving terms of the form b,OZ, 8,C12,s2,, 
etc. 

0 The undesired angular acceleration terms involving (fix, fi,, fiz). 

For development of a control design model we neglect all cross-axis coupling and 
angular acceleration effects; It follows from (71)-(73) that the equations of motion 
are approximated by the following linear model 

~,,ki, + cXzex + lcxzex = - ~ ~ ~ e ~ o ~  + M: (74) 
Jyydy + cYy6, + ~ y y O y  = J,,0,CIX + M; (75) 
J J ,  + czZeZ + kzz8, = M i  (76) 

Dividing each equation (74)-(76) by the inertia about each respective axis transforms 
the dynamics to standard second order form 

(77) 
.. Wxn 2 J z z  . M2 ezny + - e, + -ez + wX,ex = 

Qx Jxx Jzz 

-- 

.. Wyn . 2 Jzz  * M; 8, + -ey +wy,ey = -8,Rx + - 
QY JYY JYY 

'. w,, ' - Mz 6, + -ez + ~,2,e, = 
QZ J z z  

where the natural frequencies are win = fi and the quality factor  Qi = & where 
Ci denotes the damping ratio associated with axis i = (IC, y, 2 ) .  The linear model 
(77)-(79) is well suited for use as a control design model [Ill. 

We now revisit the principles of operation of the angularly vibrating microgyro in 
light of the linear model (77)-(79). First, a control loop is designed to command the 
external moment Mz(t )  in such a way that the steady state motion along the drive 
axis (z-axis) is given by 

Note that an oscillating momentum vector of magnitude JZ,dz and circular frequency 
w,, is created along the drive axis13. Recall from (79) that the motion along the drive 
axis is completely decoupled (to first order) from the motion in the input/sense plane. 

I3Here we are assuming that the drive frequency wzd is equal to the natural frequency along the 

e&) = Z,COS(W,,t) (80) 

drive axis wzn, 
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As a result, the angular motion of the gyro along the z-axis will be taken as prescribed 
in following discussion. We further assume that the gyro is operating in open loop 
mode as described earlier in the other two axes. As a result we set Adz = Ad; = 0. 
If the spacecraft begins to rotate about the input axis (y-axis) a Coriolis moment is 
developed along the sense axis (x-axis)I4. The angular deflection along the x-axis is 
then governed by 

(81) 
.. Wxn 2 J z z  6, + -ex + w,,ex = - ~ ~ w , , ~ l ~  sin(w,,t) 

QZ Jxx 

Note that we have differentiated (80) and substituted the result into (77) to obtain 
(81). By using the Laplace transform it can be shown that the steady state solution 
to the LTI system (81) is 

= X ,  sin(w,,t - 4x) 

where the amplitude is given by 

4z ZoWz,s2y 
J25 xo = 

J(W2, - W;J + 
and q5z denotes the phase angle. In open loop mode the amplitude of the steady-state 
angular deflection about the x-axis is used to provide a measure of the spacecraft 
angular rate about the y-axis (input axis). This follows immediately by inspection of 
(84) where 

or 

For maximum sensitivity of the device the natural frequency of the drive axis w,, and 
sense axes w,, should coincide. F’rom symmetry of the device it automatically follows 
that w,, M wyn. However, the natural frequency of the drive axis (z-axis) must be 
forced to match the sense frequency by designing the suspension correctly. As pointed 
out in [ll] it is difficult to passively design the housing/suspension to meet this 
requirement. Instead, a feedback control loop is required to regulate the oscillations 
along the drive axis in both magnitude and frequency. To this end, we assume that 
via proper design and/or control action along the drive axis the natural frequencies 

14The device equations are symmetric about the x and y axes - As a result, either the x or y axis 
can be designated as the input axis. (resp. sense axis) 
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are approximately matched; i.e., wxn E wyn FZ WZn. This common frequency will 
simply be denoted w,. Assuming matched frequencies it follows from (86) that 

The angular rate fly can then be estimated by rearranging (87) to obtain 

wn Jxx  Xo 
l f l y l =  -+-I 

Qx J z z  zo 
Equation (88) is the key expression underlying the operation of the microgyro device. 

As discussed earlier most real microgyro devices exhibit a certain amount of anisoe- 
lasticity due to imperfections introduced during fabrication15. Anisoelastic effects 
result in generalized coordinate coupling in the linear model. For example, consider 
the following model of the dynamics in the input/sense plane of a typical nonideal 
gyro 

J x X e x  + Jzyey + Jx,e, + cxxb, + c,,by + c,,b, + kxxOx + kxyO, + kx,O, = -JzZQzfly 

Jyxex + Jyyoy + J,,e, + cyXbx + cyy~, + cxzb, + ky,O, + kyYOy + k,,O, = J,,@,fl, 
(89) 

(90) 

To gain insight into the behavior of a nonideal (anisoelastic) device we will neglect 
all terms in (89) except for the damping coupling between the drive and sense axes. 
As a result, 

J X J x  + C,,S~ + c,,b, + kxxOx = - JzzbZfly  

Jx,ex + cx,b, + kxxOx = -( J,,flY + cxz)b, 

(91) 

(92) 
or 

Notice that since 4, is assumed prescribed, c,, now behaves as a forcing term in (92). 
As a result, even if fly = 0 (zero spacecraft rate) the sense axis will be angularly driven 
leading to a non-zero rate output. This situation is highly undesirable. Techniques 
to minimize and correct for anisoelastic effects are current research topics in the field 
of MEMS - See [16], [4], [5] for additional information. 

3 Conclusions 
In this report we have presented a first principles vectorial derivation of the equations 
of motion of both ideal and non-ideal (e.g., including anisoelastic effects) angularly 
vibrating micromachined gyroscopes. Our derivation utilized the basis-free Newton- 
Euler approach (viz., the balance of angular momentum) rather than more commonly 
used energy based formulations. Our basis-free approach to modeling leads to an 

"Specifically, the principal axes of inertia, stiffness, and damping are not aligned with each other 
or with the frames F i  and F p .  
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explicit set of dynamic equations without requiring excessive symbolic mani ulations 

frame of the gyro-assembly and simplified in order to gain insight into the physical 
operation of the device. The resulting linear model is well-suited for use in control and 
estimator design. Moreover, the Newton-Euler approach described here can can be 
readily extended to model multibody effects such as rotor/housing dynamic coupling. 

by the analyst. The resulting nonliner dynamic model was then resolvecl,inthe rotor I_ -- 
L- -5 
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