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The JPL Mission

APUL
® Expand the frontiers of space by conducting
challenging robotic space missions for NASA
0 Explore our solar system
0 Expand our knowledge of the universe

0 Further our understanding of Earth from the perspective
of space

0 Pave the way for human exploration

® Apply our special capabilities to technical and
scientific problems of national significance

® Our mission is what we do to implement NASA’s
vision
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Characteristics of
Deep Space Missions

APL
® Explore in uncertain environments
® Conduct in situ science investigations
® Operate far from Earth
® Survive for decades (in some cases)
® Operate semi-autonomously

RTAS 2003 28 May 2003 PRG-4



RTAS 2003 28 May 2003 PRG-5



RTAS 2003 28 May 2003 PRG-6



RTAS 2003 28 May 2003 PRG-7



RTAS 2003 28 May 2003 PRG-8



Types of JPL Software
APL

® Business Software
o Oracle, web-applications, MS Office
® Engineering Software

aDrawing, CAD, CAE, software development tools, MS
Office

® Mission Software

0 Ground Data System software

¢ Command generation and transmission

® Telemetry reception, distribution and analysis
aFlight System Software

# Vehicle (spacecraft) control software

¢ Payload software
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Control System Domain
Pl

® Characteristics:
aInteracts with world via imperfect sensors & actuators
o Designed for continuous operation
o Real-time closed-loop control
o Embedded systems, often
® Examples:
a Petroleum refining
o Pharmaceutical manufacturing
aNuclear power plant
o Spacecraft control
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* Diagram from “Software Architecture: Perspectives on an Emerging Discipline”, Shaw & Garlan, 1996
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Deep Sgace Requirements on

W \ehicle Control Software (1 of 4)
APU

® |nitiate and maintain control of vehicle attitude
® Deploy vehicle assets if necessary
Q Solar arrays
o Antennae
0 Payload booms
® Monitor vehicle health for serious equipment failures

® Autonomously execute critical mission activities
a Trajectory corrections
a Orbit insertions
a Entry, descent, and landing
0 Surface excursions
0 Scientific observations
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Deep Space Requirements on
Vehicle Control Software (2 of 4)

JPU
® Protect vehicle assets from damage or exposure
0 Optics
o Thermal control surfaces
0 Delicate structures
0 Deployables
® Notify operators of unrecoverable errors
®* Keep the vehicle “safe” for weeks without interaction

0 Maintain power with solar arrays

0 Protect consumable resources (e.g., fuel, cryogenic coolants,
switch cycles)

0 Maintain an attitude conducive to Earth communications
o “Worry” about not hearing from Earth (did my receiver fail?)
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WYYy Deep Space Requirements on
= Vehicle Control Software (3 of 4)

Pl

® Infrequent, scheduled communication

a The ‘network’ is not continuously available due to DSN constraints
and spacecraft activities that compete for power and pointing..

® Distance and Time Delay

a With a ~10 hour round-trip light-time delay to Pluto, it's impossible
for operators on Earth to react to events in a timely manner.

® Distance and Communication Rate

0 With a data rate of ~300 bits/sec from Pluto, it isn’t feasible to send
all of the raw science data; prioritization/summarization is needed.

® Distance and Pointing

0 When transmitting, need to point antenna at where Earth will be
when the signal arrives, not at where it is now. Vice versa for
receiving.
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Deep Space Requirements on

 Vehicle Control Software (4 of 4)
AP0
® Special Relativity and Time Dilation

0 Though spacecraft velocity is a tiny fraction of lightspeed,
navigation must take relativistic effects into account.

® Limited Flight Processor and Memory

0 Radiation-hardened flight processors are years behind mainstream

commercial processors. Flight software must be frugal with CPU
cycles and memory.

® Cruise Time and Moore’s Law

a The disparity between flight and ground processing abilities grows
with every year of cruise time.

® Limited Resources and Tight Coupling
0 In a resource-limited system, ‘everything affects everything’.
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Computing: Flight vs. Ground
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desktop computers will be running at 100,000 Mips!
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JpL

Deep

Space

Application Differences (1 of 2)

Consequence of

User inconvenience

possible loss of

. Terrestrial Flight System |Flight System for
Attribute Consumer Embedded for Earth Orbit Deep Space
Example Web Browser | Cellular Phone GPS Satellite Deep Space One

User inconvenience; Loss of science data

Loss of service and/or
replacement satellite

and/or loss of mission if

hardware

Software Crash business in severe required mission critical events are
cases compromised
Duration of
Unattended Minutes Hours Hours Weeks
Operation
: Beta-test with . Formal test on rare, Formal test on rare,
Test on plentiful . .

Test Method volunteer users on expensive and complex | expensive and complex

common platforms hardware hardware
Deyelopment Months Months to a year Years Years
Timescale
User. Interaction Seconds Seconds Hours Days
Timescale
User{l)’:; c)llback Milliseconds Milliseconds Seconds Minutes to hours
Autonomous .
Operation Low Low Moderate High
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JPL

Deep Space

Application Differences (2 of 2)

: Terrestrial Flight System |Flight System for
Attribute Consumer .
ttribu Embedded for Earth Orbit Deep Space
Example Web Browser | Cellular Phone GPS Satellite Deep Space One
Complex: (usually) Complex: multiple
, payloads [cameras,
single payload
) ) spectrometers,
[transceiver], vehicle
magnetometers, radars],
control sensors and :
tuators [star trackers vehicle control sensors
actualors [star trackers, and actuators [star
: : gyros, sun sensors,
Simple: PC, Simple: Keypad, thrusters power trackers, gyros, sun
Interfaces keyboard, mouse, transceiver, . P sensors, thrusters power
: : switches, heaters, :
monitor microphone, speaker switches, heaters,
temperature sensors],
L temperature sensors],
communications .
communications hardware
hardware [RF )
: : [RF transmitters &
transmitters & receivers, :
data buses), launch receivers, recorders,
4 data buses], launch
vehicle .
vehicle
Safet Capability to achieve | Capability to achieve and
Consid ); None None and maintain a safe maintain a safe state for
onsiderations state for several hours several weeks
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LYy Coupling In Space Systems
JPL

® The world of side-effects

0 Turning on a disk drive has the following side effects:
¢ It reduces available power
¢ |t causes heating
¢ It causes vibration
¢ |t causes electromagnetic radiation
¢ [t imparts rotational torque
¢ It stabilizes orientation around axis of rotation

aln a server room on Earth, these side effects are
negligible

0In a spacecraft, every one of these side effects is
significant and must be managed!
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Coupling in Space Systems
(2 of 3)

® Complex couplings arise from physics and design
a Amount of mass launched determines a big mission cost
Q Therefore, minimize size of batteries, size of solar panels, amount

of memory, articulation mechanisms, shielding, smaller antenna,
low-power transmitter, etc

a That means:
¢ Slower CPU and busses and less memory
¢ Can't drive and transmit concurrently
¢ Can't run heaters while firing thrusters
+ Can't independently point camera and antenna

¢ Lower signal-to-noise ratio, so lower data communication rates, so
science downlink is limited

¢ Must hold reserve power for surviving the night
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Coupling in Space Systems

. 4 (3 of 3)
S0
Structures
PropuISIon// [ | hermal
Attltude Instruments
control Power
Commands SCIence
& Data \\ \

Telecom

* Some domains of concurrent design in JPL’s Project Design Center
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-l Couplings in a Mars Rover
J 00000

® Consider a home heating system:

0 It is designed as a thermal subsystem that has complete
responsibility for estimating and controlling temperature

® However, on a Mars Rover, thermal control:
0 Competes for power with driving, science, telecom, etc
0 Is affected by heating from nearby powered-on devices
0 Is affected by position of Sun relative to rover

0 May produce electromagnetic interference that precludes use of
certain science instruments

0 If temperature sensor fails, must rely on thermal model
0 If heater fails, must turn on nearby devices for heating effect
® Observation: The very concept of self-contained thermal
control falls apart because it rests on an assumption of
loose coupling
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<% Example Spacecraft States
SPL

® Dynamics
o Vehicle position & attitude, gimbal angles, wheel rotation, ...
® Environment
o Ephemeris, light level, atmospheric profiles, terrain, ...
® Device status
a Configuration, temperature, operating modes, failure modes, ...
® Parameters
o Mass properties, scale factors, biases, alignments, noise levels, ...
® Resources
o Power & energy, propellant, data storage, bandwidth, ...
® Data product collections
o Science data, measurement sets, ...
® Data management policies
o Compression/deletion, transport priority, ...
® Externally controlled factors
0 Space link schedule & configuration, ...
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W Example Spacecraft Models
SPL

® Relationships among states
o Power varies with solar incidence angle, temperature, & occultation
® Relationships between measurement values and states

0 Temperature data depends on temperature, but also on calibration parameters and
transducer health

® Relationships between command values and states
o It can take up to half a second from commanding a switch to full on
® Sequential state machines
o Some sequences of valve operations are okay; others are not
® Dynamical state models
a Accelerating to a turn rate takes time
® Inference rules

o If there has been no communication from the ground
in a week, assume something in the uplink has failed

® Conditional behaviors
a Pointing performance can’t be maintained until rates are low
® Compatibility rules |

o Reaction wheel momentum cannot be dumped while being used for control
RTAS 2003 28 May 2003 PRG-25




Deep Space Vehicle Control
Software Architecture (1 of 2)

SPL
® Real-time
a1 to 10 Hz control of spacecraft attitude

aProcessor interrupts or polling for
¢ Attitude sensor updates
¢ Data bus events
¢ Uplink/downlink servicing

a Priority-based multi-tasking
@ High-priority control and safety tasks get time when they need it
¢ Low-priority data processing tasks take remaining time available

¢ Task communication via interprocess communication
mechanisms
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Deep Space Vehicle Control
Software Architecture (2 of 2)

JpL

® Robust

a Limited data sharing
¢ Use of global variables across tasks is discouraged
¢ Use of pointers across tasks is discouraged
¢ Data usually passed between tasks by value
a Protect shared information
¢ Semaphores and task locks
o Memory partitions via the operating system
¢ Limits overrunning data buffers and corrupting other tasks
0 Self-monitoring
¢ Must recover control quickly in the event of lock-ups or crashes
a Limited hardware access
¢ Centralized and controlled access through a single interface
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Life-

Deep

Space

Cycle Differences (1 of 4)

Requirements

® Must consider
payloads, Earth-
orbital environment,
mission duration,
frequency of contact,
and operations
staffing and budget

Life-Cycle Consumer Terrestrial Flight System |Flight System for
Phase Embedded for Earth Orbit Deep Space
Example Web Browser | Cellular Phone GPS Satellite Deep Space One
Concept Product idea and/or | Product idea and/or Government or Scientific objective

customer feedback | customer feedback | commercial objective
® Developed through | ® Developed through | ® Rigorously developed |® Rigorously developed to
developer and developer and to meet high-level meet high-level sponsor
customer customer sponsor or or institutional criteria
discussions over discussions over institutional criteria over many months
days or weeks days or weeks over many months

® Must consider multiple
payloads, mulitiple
environments [launch,
cruise, planetary],
critical mission
activities, mission
duration, frequency of
contact, and operations
staffing and budget
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JpL

Deep

Space
Life-Cycle Differences (2 of 4)

High-Level Design

Life-Cycle Consumer Terrestrial Flight System |Flight System for
Phase Embedded | for Earth Orbit Deep Space
Example Web Browser | Cellular Phone GPS Satellite Deep Space One

®Developed from | ®Developed from | ®Developed from ® Developed from
requirements over | requirements over | requirements over requirements over
days or weeks weeks months months
® Some prototyping |® Some prototyping
® Little prototyping ® | ittle prototyping

® Formally reviewed by
peers, management
and customers prior to
detailed design

® Formally reviewed by
peers, management and
customers prior to
detailed design

® Weeks by a few

® Months by a few

® Months to years by

® Years by small to large

individuals individuals to small {  small teams with teams with detailed
Detailed Design teams detailed documentation and peer
documentation and reviews
peer reviews
®*Weeksby afew |®Monthsbyafew |® Monthstoyearsby [®Months to years by
Implementation individuals individuals to small |  small teams with small to large teams
teams detailed with detailed
documentation documentation

RTAS 2003
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JPL

Deep

Space
Life-Cycle Differences (3 of 4)

Life-Cycle Consumer Terrestrial |Flight System for| Flight System
Phase Embedded Earth Orbit for Deep Space
Example Web Browser | Cellular Phone GPS Satellite Deep Space One
® Days to weeks ® Weeks ® Weeks to months, ® Weeks to months,
Unit Test usually with similar or usually with similar or
emulated hardware emulated hardware
®Days to weeks on | ®Weeks on ® Months on often-new  |® Months on often-new
. mature platforms | (typically) mature prototype or prototype or
Hardware Integration hardware engineering model engineering model
hardware hardware
® Not applicable ®Weeks on ® Months on the vehicle |®Months on the vehicle
(standalone (typically) mature in various in various
Svstem Test application) hardware environments (static environments (static
ystem 1es testing, dynamic testing, dynamic
testing, thermal- testing, thermal-
vacuum testing) vacuum testing)
® Via internet or disk { ® Via download or | ® Installed prior to launch |® Installed prior to launch
with user programming '
Deployment interaction sqpport eq_ujpment ® Requires built-in pgtgh ® Requires built-in pgtgh
with technician and/or load capabilities | and/or load capabilities
interaction through RF link with through RF link with

operator interaction

operator interaction

RTAS 2003
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JpL

Deep Space
Life-Cycle Differences (4 of 4)

Life-Cycle Consumer Terrestrial | Flight System | Flight System for Deep
Phase Embedded |for Earth Orbit Space
Example | Web Browser | Cellular Phone | GPS Satellite Deep Space One
® Real-time ® Real-time ® Real-time ® Delayed interaction with user via
interaction with interaction with interaction with user | RF link
user via user via keypad, via RF link ® Non-real-time execution of
keyboard/mouse | microphone, and -
and monitor speaker ® Non-real-time sophisticated command
execution of timed Sequences
commands ® Often unobservable execution
of critical events [orbit insertion;
Operation ® Analysis of health entry, descent and landing; night-
and safety side science]

information by user

®Real-time
transmission of
engineering and
payload information

® Storage of engineering and
scientific observations

® Analysis of health and safety
information by user

® Playback and transmission of
scientific information to customer

RTAS 2003
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Challenges of Deep Space
(1 of 2)

SP0L
® Robustness

a Vehicle must survive hostile environments for weeks relying only
on the onboard intelligence bestowed by its creators

® Precision

a Critical encounter events such as orbit insertion, landing, or flyby
must occur at exactly the right time for exactly the right duration

a The penalty for failure is loss of mission
® Complexity
0 Embedded software is inherently complex since it involves
interaction with the real world and the concept of time

0 Deep-space software complexity is amplified by the many
interfaces, environments, and scenarios which the software must
accommodate
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Challenges of Deep Space
(2 of 2)

® Mars ‘98 mission failures

0 Both software related
¢ But both also system engineering failures |
o One due to failure to keep units straight in ground software
¢ Mars Climate Orbiter became mistargetted and failed to achieve orbit
0 One due to failure to faithfully run planned tests on vehicle flight
software
& Mars Polar Lander erroneously shut down landing rockets 40 meters
above the surface of Mars
0 Both failures were preventable with proper, rigorous
application of system engineering and testing principles
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Mltlsgatmg the Risks of
Deep Space Vehicle Control

Software Development (1 of 22

® Design for the worst

aVehicle “safe” mode is usually the most critical software
¢ If we can get to “safe” mode, we are usually okay

o Hardware monitors the software heartbeat

aAdvanced fault protection to
¢ Detect and correct minor problems, or
& Ensure achievement of “safe” mode

® Rigorous development practices
0 Peer reviews

Q Heritage reviews
0 Coding standards enforced by acceptance reviews

o Repeatable and documented unit tests
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Mltlgating the Risks of
Deep Space Vehicle Control

Software Development (2 of 2

® Test, Test, Test!
a Test what you fly and fly what you test
aPlan testing to verify the requirements
a Plan testing to validate the operation
Q Test when you meet the hardware...
a...and when the system is completed
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Reducmg the Cost of
Deep Space Vehicle Control

’ Software Development (1 of 2

® Autocode Generation
a State Charts, XML

0 Used largely in Fault Protection design, but also in
communication interfaces (e.g., messages, commands,
and telemetry)

aPermits specification of design in one location and at a
higher, more engineer-friendly level

0 Reduces errors in translation from design to
Implementation

0 Reduces cost of late changes and bug fixes
0 Expanded role?
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Reducing the Cost of
Deep Space Vehicle Control

Software Development (2 of 2

® Reuse

Q Emerglng discipline, presently haphazard and based on similarity
of mission and/or hardware

0 Formalized and intended at JPL by the Mission Data System
(MDS) Project

0 Still several years from application
# Mars Science Laboratory - 2009
® Improved and Integrated Design and Verification Tools
0 UML Tools
0 Formal Verification Tools

¢ Model-checking of requirements, design, and implementation
¢ Runtime-verification

¢ Static analysis tools
¢ Force thinking about the properties that the system must satisfy
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Xy Challenges of Robotic Space
W Exploration: A Summary (1 of 2)

APL

® JPL has a mission to continue exploration in
Deep Space

® Deep Space missions are unique, difficult, and
complex

alIf they weren’t, anyone could do it!

a Software for Deep Space missions is also unique,
difficult, and complex

® Developing Deep Space software requires rigor,
discipline, and many checks and balances
0 Reviews
0 Testing
0 Documentation

RTAS 2003 28 May 2003 PRG-38



gty Challenges of Robotic Space
' Exploration: A Summary (2 of 2)
JPL .
® Cost benefits are being realized through the
application of innovative software engineering
techniques and tools
aAutocode generation
¢ State charts, XML, UML
0 Designing for reuse
¢ Mission Data System

nAdvanced design and verification tools
¢ UML tools
¢ Model checkers
& Runtime checkers
¢ Static analysis
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JpL

Artist’s conception:

A Mars sample-return mission
blasting off from Mars
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