
Trends in Software Verification

Gerard J. Holzmann

JPL Laboratory for Reliable Software
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 9 1006

gerard.j.holzmann@jpl.nasa.gov

Abstract. With the steady increase in computational power of general purpose
computers, our ability to analyze routine software artifacts is also steadily
increasing. As a result, we are witnessing a shift in emphasis from the verifica-
tion of abstract hand-built models of code, towards the direct verification of
implementation level code. This change in emphasis poses a new set of chal-
lenges in software verification. We explore some of them in this paper.

1. Introduction
In the last few years, we have seen a push towards the direct application of formal ver-
ification techniques to implementation level code, instead of to manually constructed
high-level models of code. Although the direct application of, for instance, model
checking techniques to implementation level code can significantly increase the com-
putational requirements for a verification, the promise of this new approach is that it
can eliminate the need for expert model builders and can place the power of auto-
mated verification techniques where it belongs: in the hands of programmers.
There are two general approaches to the software verification problem in this form

Mapping the implementation level description of the software artifact
mechanically to the description language of an existing verification tool. The
application is rewritten to match the requirements of a given verification tool.
Developing a verification tool that can work directly on implementation level
descriptions. The verification tool is rewritten to match the requirements of a
given implementation language.

Examples of projects pursuing the first method include the first Java Pathfinder tool
[5] , the Bandera toolset [4], and the FeaVer toolset' [8], which all target the SPIN
model checke? [7,10] as the main verification engine. Examples of projects pursuing
the second method include the second version of the Java Pathfinder tool [2] ,
Microsoft's Bebop toolset [I], and the Blast tool [6].
Of the six projects mentioned, three target the Java programming language ([2,4,5]),
and the remaining three target the C programming language.
The two methods have different advantages and disadvantages. The first makes it
possible to leverage the power of an existing tool, and to trust the validity of the

I . http://cm. bell-labs.com/cm/cs/what/feaver
2. http://spinroot.com/whatispin.html

i

mailto:gerard.j.holzmann@jpl.nasa.gov
http://cm
http://spinroot.com/whatispin.html

concepts from one language into another.
Having recognized that, at least at some level of abstraction, both the programming
language and the model checking language perform the same type of function, we
may wonder if it would not be possible to use the programming language directly to
define a system of states and state transformers and to let the model checker add only
its checking engine. We can do so by embedding descriptions from the source pro-
gramming language directly into the target model that will be verified by the model
checker.
Doing so, we can combine the benefits of both approaches outlined above, while
avoiding all the work that would be needed to solve the hard part of the problem in
both domains. For the first approach this means that we can avoid having to develop a
method that would allow us to provide an accurate interpretation of source C code,
such that it can be mapped into the target language of the model checker. For the sec-
ond approach it means that we can avoid having to develop an efficient model check-
ing system for a new language from scratch.
SPIN is designed to generate a verification program in C, to perform the model check-
ing task for a high-level system model. To do so, SPIN interprets the state descriptors
and state transformers as the user specified them in PROMELA (the SPIN input lan-
guage), and converts them into C code, thereby fixing their semantic interpretation.
Rather than having a new translator convert native C code into PROMELA, and have
SPIN convert the PROMELA code back into C, we can try to bypass the translation
steps and use the original C code to define elements state transformers within the veri-
fier directly. Ultimately, it is now the C compiler that determines the semantics of the
C code, just like it does when we compile the application level code directly for
execution.
To support these ideas, SPIN Version 4 introduced a small set of new language primi-
tives. The most important of these are: c-code, c-expr, and c-state.

The c-code primitive allows us to include an arbitrary fragment
of C code as a formal state transformer in a SPIN model.
The c-expr primitive can be used to evaluate an arbitrary C
expression and to interpret the return value as a Boolean condi-
tion (non-zero meaning true and zero meaning false).

The c-state primitive, finally, can be used to embed an arbitrary
global or a local C data object into the state descriptor that is
maintained by the model checker.

With the help of these three primitives it now becomes possible to build an accurate
model of a large class of routine C applications with relatively little effort.

c-code

c-expr

c-state

3. Separating Data and Control
It is of course not sufficient to simply encapsulate an entire C program and pass it to
the model checker to execute: the model checker needs to be able to control the
execution of the program. Consider, for instance, the execution of a concurrent sys-
tem, with multiple threads of execution being able to access and modify a pool of
shared data objects. There could well be race conditions in the code that depend on
the particular access pattern that is followed: the specific interleaving of statement
executions. Unless the model checker is in charge of these interleavings and can

and celsius are embedded here into the state vector as local objects of the main
process. The model extractor automatically arranges for the variable references to be
prefixed with pointers into the appropriate part of the verifiers state descriptor, in such
a way that any reference to, for instance, fahr becomes Pmain->fahr.
In a similar way we can generate models that use pointers, even function pointers,
though there is no direct support for any of these language features at the SPIN level.

c-state "float fahr" "Local main"
c-state "float celsius" "Local main"

active proctype main0
(int lower;

int upper;
int step;

c-code (Pmain->lower=O;) ;
c-code (Pmain->upper=300; 1;
c-code { Pmain->step=20; 1;
c-code (Pmain->fahr=Pmain->lower; 1;

do
: : c-expr ((Pmain->fahr <= Pmain->upper) I ;

c-code (Pmain->Celsius =

c-code (Printf ("%4.0f %6.lf\n",

c-code { Pmain->fahr = (Pmain->fahr+Pmain->step); I ;

((5.0/9.0)*(Pmain->fahr-32.0));) ;

Pmain->fahr, Pmain->Celsius);) ;

: : else -> break
od

1

Figure 2. SPIN Model Corresponding to Figure 1

There are limits to how much can be automated with this approach. Consider, for
instance, how function calls, like printf in the example, are handled. Without spe-
cial provision, MODEX considers a function call to be an atomic event, and the code
that is generated will not return control to the model checker until the function is com-
pletely executed. This is the right policy for the printf call. To allow the model
checker to look inside a function, though, we need to give additional instructions to
the model extractor. This means that we still need to rely on human judgement to
determine which functions need instrumenting, and which can be left alone.
To apply the model checking algorithm, the model checker must be able to set the
application into any one of its reachable states. This means that the state descriptor
that is maintained by the model checker must always contain a complete description
of the (relevant part of the) state of the system. If any part is missing from this
description, then that part of the system state will not get updated accurately when the
verifier places the system into a new state.
A potential problem now exists if the application can maintain part of its system state
external to the application. This can happen, for instance, if the application stores or
reads data from the file system, if it communicates through live network connections
with other systems, and even if it can dynamically allocate memory for new data
objects. In the latter case, the memory allocator, maintaining heap memory, is an

could determine for any given program p whether or not it would terminate if
executed. The procedure m c (p , i) can then be used to return true if it determines that
program p necessarily terminates on input i, andfalse it fails to terminateV4 Naturally,
we must assume that m c itself will always terminate in a finite amount of time, so it
cannot simply run the program it is inspecting to determine the answer to its question.
How precisely it does operate is undefined.

s t r a c h e y (p , i) / * program p , input i * /
I
L : if (m c (p , i)) / * t r u e i f p h a l t s on i * /

goto L; / * make s t r a c h e y o loop * /
else

e x i t (0) ; / * e l s e h a l t * /
1

Figure 3. Strachey’s Construction.

Given the procedure m c we can now write the program shown in Figure 3. The pro-
gram s t r a c h e y (p, i) is designed to halt when the program p (i) does not, and vice
versa.
All is well, until1 we ask whether the program s t r a c h e y (s t r a c h e y , s t r a c h e y)
will terminates or loops. Clearly, it cannot do either. If it halts, then it must loop, and
vice versa.
It is curious that this version of the proof has never been seriously challenged. First,
note that the proof argument seems to be independent of the issue of finiteness, and
would appear to apply equally to finite state and infinite state programs.
Strachey tacitly assumes in his argument that all programs either halt or loop. In prac-
tice, though, there is a third possibility: a program can fail. When a program attempts
to divide by zero, or runs out of memory, it is forced to terminate by its environment:
it fails. Program failure cannot simply be grouped into the category of program termi-
nation, because if this were the case we could apply Strachey’s argument to the class
of finite state programs.

Given an upper-bound N bits on the amount of memory that a program can con-
sume, we can derive an upper-bound on the number of reachable states it could
generate when executed (trivially 2N). If we declare that exceeding the upper-
bound of N bits of memory constitutes program termination as considered in
Strachey‘s argument, then we can easily decide the outcome of m c (p, i) in
finite time: we have to consider maximally 2N steps of the program. Within this
number of steps the program must either terminate or loop.

We can use SPIN to solve the halting problem for finite state programs, using the
model extraction procedure we have outlined before. To do so, we first write a
UNIXO shell script that retums true if SPIN determines that a given model has at least
one reachable endstate, and false if it does not.

~ ~~ ~

4. In Strachey’s version of the proof, the required arguments to procedure mc () are omitted.

7

I .

Note that if SPIN can be used to verify the termination properties of systems with up
to N reachable states, it will itself need considerably more than N reachable states to
perform this verification. Therefore, SPIN also could not be used to verify itself in
another Strachey-like construction. There is much more that can be said on this topic
though, cf. [IO].

5. Conclusion
A practically useful software tool is usable by any normally skilled programmer,
requiring no more tool-specific training than an ordinary language compiler. Since
their inception, roughly twenty years ago, formal software verification systems have
relied on the construction of a mathematical or computational model of an applica-
tion, by a domain expert, which is then analyzed either manually or mechanically.
Even the fully automated tools that operate in this domain come short of reaching the
goal of practically useful software tools as long as they rely on human experts to con-
struct the input models.
The emphasis of much of the work in the area of formal verification has therefore
recently been placed by some groups on the automatic generation of logic models
from implenientation level code, and by others on the adaption of the verification
tools themselves to work directly on implementation level code. We have shown that
these two seemingly distinct approaches can effectively be combined, by allowing the
embedding of implementation level code into higher-level logic models that can then
be verified with existing model checking techniques. The technique we have
described relies on the fact that we can separate the control aspects of a program from
the data manipulation. The control aspects of a program can in most cases trivially be
adapted to the syntax requirements of the logic model checker, while the data aspects
(which are much harder to convert) can be embedded.
Limitations: There remain clear limitations to this approach. If most control aspects
can easily be handled in this way, this does not mean that all will fit the default pat-
tem. The use of function pointers in C programs, for instance, needs special care, as
does the use of dynamic memory allocation, and access by a program to external
sources of information. It may be possible to develop a methodology, though, by
which cases such as these can be handled more or less routinely in the construction of
a test-harness for the application to be verified. A beginning with such a development
can be found in the user guide to the Bell Labs FeaVer system [9].
It is also clear that the model checker cannot defend itself fully against outright errors
within code that is embedded inside the logic models that it analyzes. Consider, for
instance, what happens if such code contains a divide-by-zero error, or dereferences a
nil-pointer. A model extractor can be somewhat proactive, and instrument the embed-
ded code with additional checks. Our MODEX tool, for instance, inserts an assertion
before any pointer dereference operation, to make sure it is non-zero. Not all errors
can be anticipated, and some can cause the model checker to crash, just like the appli-
cation being verified. There is still benefit to the use of the model checker, even in
these cases, since the model checker will be far more likely to find the cases where
application code may crash, as part of its search process. A crashed model checking
run, like a real execution, leaves a detailed trace of the steps in the program that led to
the failure, making it possible to diagnose and repair the code.
Decidability issues: The fact that we can do model checking on at least some cate-
gories of implementation level code may at first seem to conflict with long established

'

4

decidability results, but can easily be seen to be bound by all familiar limits. Other
approaches to the software verification problem, such as static analysis and
approaches based on theorem proving methods, naturally share this fate. As we hope
to have shown, though, the existence of these limits need not prevent us from building
systems that are both practically useful, and reliable.

2Acknowledgements
The research described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

References
1.

2.

3.
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.

T. Ball, R. Majumdar, T. Millstein, S.K. Rajamani, Automatic Predicate Abstraction of C
Programs, Proc. PLDI 2001, f2.SIGPLAN Notices, Vol. 36, No. 5 , pp. 203-213.
G. Brat, K. Havelund, S . Park, W. Visser, Java PathFinder - A 2nd generation of a Java
model checker, Proc. Workshop on Advances in Verification, Chicago, Ill., July 2000.
E.M. Clarke, 0. Grumberg, and D. Peled, Model checking, MIT Press, January 2000.
J.C. Corbett, M.B. Dwyer, et al., Bandera: Extracting finite-state models from Java
source code, Proc. 22nd Int. Con$ on Software Engineering, June 2000, pp. 439-448.
K. Havelund, and T. Pressburger, Model Checking Java Programs Using Java
PathFinder, Int. Journal on Software Tools for Technology Transfer, Vol. 2, No. 4, April

T.A. Henzinger, R. Jhala, et al., Software Verification with Blast, Proc. 10th SPIN Work-
shop on Model Checking Software, LNCS 2648, Springer-Verlag, 2003.
G.J. Holzmann, The Model Checker SPIN, IEEE Trans. on Software Engineering, Vol.
23, No. 5 , May 1997, pp. 279-295.
G.J. Holzmann, and M.H. Smith, An automated verification method for distributed sys-
tems software based on model extraction, IEEE Trans. on Software Engineering, Vol. 28,
No. 4, April 2002, pp. 364-377.
G.J. Holzmann, and M.H. Smith, FeaVer 1.0 User Guide, Bell Labs, Dec. 2002, 64 pgs.
Online document http://cm.bell-labs.com/cm/cs/what/modex/.
G.J. Holzmann, The SPIN Model Checker: Primer and Reference Manual, Addison-Wes-
ley, ISBN 0-32122-862-6, August 2003.
M.L. Minsky, Computation: Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, N.J., 1967.
A. Pnueli, The temporal logic of programs. Proc. 18th IEEE Symp. on Foundations of
Compurer Science, 1977, Providence, R.I., pp. 46-57.
C. Strachey, An impossible program, Computer Journal, VoI. 7, No. 4, Jan. 1965, p. 313.
A.M. Turing, On computable numbers, with an application to the Entscheidungsprob-
lem, Proc. London Mathematical SOC., Ser. 2-42, 1936, pp. 230-265.

2000, pp. 366-381.

http://cm.bell-labs.com/cm/cs/what/modex

