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Abstract-As in industry, JPL has experienced 
numerous changes in how we develop both flight and 
ground software. Software languages, design methods, 
and development processes have all changed from what 
they were in the early to mid 80’s. It used to be that our 
spacecraft were flying hardware with a computer on 
board. Today our spacecraft are more and more 
becoming complex flying computers especially with the 
advent of sophisticated fault protection and auto- 
navigation software. Because software is playing a 
more critical role in our deep space missions, there has 
been a significant increase in interest in software at JPL. 
As part of this new focus a number of activities have 
been initiated to improve how we manage and how we 
measure our software activities. Currently we are 
validating and calibrating commercial parametric tools, 
as well as developing our own models. As a result of 
integrating our cost databases and engaging in an 
extensive software metrics activity, it has become 
possible to analyze JPL’s historical datasets for trends 
in metrics. In this paper, we will summarize the 
software trends and their impact on the cost of 
developing flight and ground software. 

INTRODUCTION 

There has been an increase in interest in software at JPL 
because software is playing a more critical role in our 
deep space missions. Recently the Software Quality 
Improvement (SQI) Project has been formed to achieve 
and sustain excellence in software engineering at JPL to 
enable mission success. It will enable and promote 
software best practices, and leverage JPL experience in 
software engineering in support of major software 
projects, throughout the entire software life cycle. The 
goal of the SQI Project is to establish an operational 
software improvement program that results in the 
continuous measurable improvement of software quality 

at JPL. Its objectives include improving cost and 
schedule predictability, improving the quality of 
mission-critical software, reducing software defect rates 
during testing and operations, increasing software 
development productivity, promoting software reuse, 
and reducing project start-up time. 

As a result of the recent integration of our cost 
databases, in support of the SQI project, it has become 
possible to analyze the historical datasets for trends in 
software development cost, productivity rates, as well 
as some schedule and quality-related metrics. These 
analyses are intended to support software managers by 
providing a quantitative basis for informed decision- 
making regarding their projects. Further, the value to 
JPL of the trend analysis is expected to improve as the 
lab engages in an extensive data collection activity over 
the next few years. In conjunction with historical data 
trend analysis, there has been a successful ongoing 
effort to validate and calibrate commercial parametric 
tools such as COCOMO, SEER-SEM and Price S as 
well as developing our own models in an effort to 
improve cost estimations for software projects at JPL. 
There is also a major focus on developing a JPL version 
of the COQUALMO model to provide predictive defect 
introduction and removal estimates to support ongoing 
quality assessment and planning throughout the 
software lifecycle. 

In this paper, we will summarize our activities as well 
as various software trends at JPL and their impact on 
the cost of developing flight and ground software. The 
various trends to be discussed include: 

0 Effort to size relationships 
Various productivity trends 
Size and effort trends over time (past 3 
decades) 

0 Defect rates (actual and predicted) as they 
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pertain to schedule and effort. 
These relationships will also be compared and 
contrasted across to major software categories at JPL, 
specifically flight software and ground software. 

DATABASES AND METHOD~LOGY 
The data used in this study is the integration of data 
from various sources that has been collected by JPL’s 
Cost, Risk & Systems Analysis Group since 1986. The 
major sources for the data are: 

NASA Software Cost Database (1986 - 1990) 
Consists of 100 ground and 20 flight data points at 
subsystem-level from all NASA Flight Centers, 
collected post delivery 

JPL Software Resource Center (SORCE) Software 
Cost Database (1989 - 1991) 

Contains 49 data points at assembly-level, collected 
at time of delivery 

JPL Deep Space Network (DSN) Software Cost 
Database (1990 - 1997) 

Contains over 15 DSN subsystem upgrades, 
collected at Preliminary Design Review and each 
major delivery 

JPL SQI Foundation Measures Database (2001 - on- 
going) 

Consists of 8 JPL flight software subsystems 
Defect data from 4 JPL projects 

The majority of the data was collected to support a JPL 
version of the COCOMO software cost estimation 
model. The NASA, SORCE and DSN software cost 
databases were collected using a survey instrument to 
collect inputs for the COCOMO 81 version of the 
model. 

This was supplemented to obtain additional information 
on schedule and effort allocation across phases and 
activities. Obtaining this information typically required 
interviews with software managers and technical 
personnel ranging from 1 person for 1-2 hours per 
record in the NASA database to interviewing from 3-6 
persons for 1-2 hours with an additional 1-2 work 
weeks in analyzing the software projects’ schedules, 
estimates, and official budgets. This data was collected 
from 1986 through 1997. 

In 2001 when the SQI Measurement Program was 
initiated, data was collected to support the use of 
COCOMO I1 and SEER-SEM for cost estimation and a 
range of software engineering models for establishing 
baselines for planning and defect analysis. There exist 
a significant overlap between the input data required for 
COCOMO I1 and SEER-SEM. Therefore, 

questionnaires that were originally designed for 
COCOMO I1 input data collection were reviewed and 
adapted for use in an effort to collect SEER-SEM data 
simultaneously. The revised survey was subsequently 
used in interviews with key software people of the 
various projects. The similarity of SEER-SEM and 
COCOMO I1 pararneterdcost drivers facilitated the 
ability to map survey answers (data) to both models. 

The survey instrument asked the key software people to 
rate their piece of the project in various categories, from 
team capabilities, software reliability, complexity, and 
tool usage. Multiple (2-3) interviewers participated in 
each of the interviews conducted. Then interviewers 
compared notes taken during the interviews and cost 
driver ratings derived from conversation with the 
interviewee. All cost driver-rating discrepancies were 
resolved through discussion between the interviewers. 
Discrepancies were noted and, when appropriate, ranges 
were formed for input parameters when full resolution 
could not be reached. Using the results from these 
interviews along with historical data, the models’ inputs 
were entered into the associated implementation tools 
(software) for each. Follow-up interviews were 
conducted as necessary for the purpose of data conflict 
resolution and clarification with regard to project scope 
and CSCI applicability. Past projects were selected in 
order that actual cost and effort data could be collected 
to compare with the estimates produced by the models. 

Some data had to be scrubbed. For example, different 
projects include different activities and life cycle phases 
in their effort actuals. To make the records comparable, 
adjustments were required. To discount reused and 
inherited code, equivalent lines were estimated to get an 
indication of the actual number of lines written and 
modified. 

This yielded a total of 190 data records covering ground 
and flight software implementations that completed 
from 1980 through projects that will not be completed 
until 2008. The datum included in the integrated 
database are start date, completion date, equivalent 
source lines of code (physical lines, no comments, no 
blanks), effort in work months, schedule length, 
application category (flight or ground), and whether the 
data reflected actuals or estimate-to-complete. Not all 
records have data for all fields. 

Due to gaps in data collection over the years there are 
gaps in the records, such that there are no ground 
software records post 1997 and no flight software 
records from 1990-1995. 
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COST PREDICTION MODELING 
As part of the SQI Project’s goal to improve cost 
predictability, a study to evaluate three models - 
COCOMO 11, SEER-SEM, and PRICE S - was initiated 
in 2001. JPL, because its primary focus is developing 
and operating deep space science missions, has many 
characteristics that make it unique from other 
organizations that develop software. At the same time, 
there can be many things in common. Therefore, the 
study was started to determine whether some cost 
estimation tools could be used “out of the box” or even 
if they were applicable to the JPL environment at all. 

These models have been validated for both flight and 
ground software development at JPL using historical 
data consisting of 10 flight software projects and 9 DSN 
ground software projects. The Post Architecture 
COCOMO I1 model, SEER-SEM, and PRICE S have 
been assessed “out of the box” and predict software 
costs reasonably well in the JPL environment’. 

All models predicted better for flight software than 
ground software in general. COCOMO I1 had strong 
results for both flight and ground software. SEER 
predicted well for flight software but not as well for 
ground. (Figures 1 and 2) A validation of the SEER- 
SEM model using only its knowledge bases for input 
parameters was also performed. It was found that using 

only the knowledge bases for performing estimates did 
not correspond well to the JPL environment. PRICE S 
was the strongest predicting model for flight software 
and ground software. However, its prediction range is 
wider than COCOMO 11’s. 

It was found that all three of the “uncalibrated” models 
being evaluated - COCOMO 11, SEER-SEM, and 
PRICE S - were able to predict within similar ranges 
based on the measures we used to evaluate the models. 
On average 50% of the model estimates predicted 
within 30% of the actuals. Given that these models 
were unadjusted for JPL’s local environment, they 
performed much better than originally expected. 

Although the models predict within a reasonable range, 
it is our goal after adjusting the models - by either 
calibration or some other consistent method - to get 
80% of the estimates within 30% of actual effort. 
Calibration of the models will require collecting 
additional data. The performance is expected to 
improve as more data is collected. This data collection 
activity will not only enable more precise calibration of 
the software cost models, but will enable the analysis of 
historical trends. 
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Comparison of Uncalibrated Models' Accuracy 
for Ground Software 
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Figure 2. Uncalibrated Ground Software Accuracy 

COST METRICS TRENDS 

Software Size and Lanauaaes 

There is an expected trend of significant software size 
growth over time for flight and instrument software as 
observed in Figure 3. While ground software shows a 
decline in average size, it is not statistically significant. 
The corresponding time period also shows a migration 
towards C and C++ from other programming languages 
in general. (Figure 4) Fortran is decreasing in use for 
development somewhat but still remains in significant 
use. This appears to be due to the persistent amount of 
software being maintained that was written in Fortran. 
(Figure 5) While C and C++ are the language of choice 
for software development at JPL, critical software 
functionality, implemented in Fortran is essential to 
many missions and software needs. 

Productivity Trends 

Productivity trends have been summarized using two 
different perspectives. The first (Figure 6) shows just 
the average productivity (SLOC/work-month) for flight, 
instrument, and ground software for the eighties, 
nineties and 2000-2008. Here it can be seen that 
productivity has been increasing for all software and 
quite dramatically for flight software over the past 
twenty years. Between the eighties and the nineties, 
ground software productivity only increased by 

approximately 36%, while flight and instrument 
software increased productivity by 55%-63%. This is 
most likely a reflection of the huge increase in 
computing capacity of flight-qualified processors and 
the move to the use of modern programming Languages 
such as C instead of Assembly. In the eighties, most of 
the flight software was written in Assembly while in the 
nineties there was a shift to C and Ada, which became 

Average Size Trends 
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possible with the more powerful processors. Estimates 
for the current decade indicate productivity for flight 
software will decrease. This could be misleading, as 
software size tends to be underestimated. However, it 
also could be a reflection of the shift towards higher- 
quality, more reliable software and away from faster, 
better, cheaper, which, with hindsight, clearly reduced 
software reliability and increased risk. 

Figure 7 is another way to look at productivity trends. 
Displayed is productivity against total effort in work- 
months divided by schedule length. This is an indicator 
of how many people have to coordinate on average over 
the life of the project. It can also be used as an 
indicator of schedule compression, trying to get too 
much work done in too little time. Five different 
relationships were derived, Ground ~ O ’ S ,  Ground go’s, 
Flight 80s, Flight go’s, and Flight 2000+. In all of these 
relationships it can be seen that as development effort 
over schedule becomes tighter, development becomes 
less productive. As time increases, productivity versus 
compressed effort has been increasing, for both flight 
and ground software, although flight software in general 
has a lower productivity versus effort over schedule 
than ground software. 

Software Under Maintenence 

Figure 5. Percent of Software Under Maintenance by 
Language over Time 

Development Productivity Trends 
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Productivity vs. EfforVSchedule 
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Figure 7. Productivity versus Effort over Time by Decade 

Yize versus Effort reuse and no auto code generation. Most programming 
was done in languages such as Assembly,-and Fortran, 
with lots of declarations. The result was that a line 
written tended to be a line delivered. In the 1990s 
object-oriented languages and CASE tools allowed for 
greater inheritance and reuse. 

30th ground and flight software show trends of moving 
?om decreasing to increasing returns to scale from the 
1980s to the 1990s. (Figure 8) This shift can stem 
from the change in characteristics of software 
development over time. In the 1980s, there was little 
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Figure 8. Effort over Size by Decade 
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In addition, most of the flight projects in the 1990s 
consisted of projects that may not have properly 
adjusted for reuse. Although software reuse has 
increased over time, it is difficult to sort out. The 
exponent on the Size variable (Table 1) may not 
necessarily be less than 1.0 in terms of true equivalent 
lines of code. 

Flight 1980s 
Flight 1990s 

Table 1. Effort Equations 
I I Equation 1 R-squared 1 

E = 8 . 2 ~ ~ ~ ~ ~  0.68 

E = 15.3s0.76 0.46 
Flight 2000-08 E = 7 . 8 ~ 0 . 9 8  0.55 
Ground 1980s E = 4.7~1.01 

As expected, the fixed costs for flight software was 
higher than ground software in both the 1980s and 
1990s. The fixed cost of software development, 
represented by the constant term, has increased from the 
1980s to the 1990s for ground software. This increase 
in fixed cost may suggest that the reduction in marginal 
cost is justified as the same pattern can be seen for 
flight software. Given that there were so few data for 
flight software in the 2000-08 time period, there is no 
significant evidence for a fixed cost decrease in the 
2000s. 

0.91 

The bottom line is that no matter how one looks at the 
software metrics, there has been a marked increase in 
development productivity. 

Ground 1990s I E = 8 . 9 ~ 0 . 7 ~  

DEFECT PREDICTION MODELING 

0.56 

One of the approaches that is currently being explored 
at JPL for defect prediction with regard to defect 
densities involves the adaptation and calibration of the 
COQUALMO model for use in the JPL environment.2 
The COQUALMO model is an extension to the 
COCOMO I1 model that seeks to predict software 
defect densities based on early lifecycle 
 characteristic^.^'^'^.^ The model is regarded as an 
experimental portion or the Software Quality 
Improvement (SQI) Project’s measurement and 
benchmarking activities within the larger framework of 
the Metrics program at JPL. These characteristics 
include a subset of the input data needed to perform 
cost estimations using the COCOMO I1 model, namely 
21 of the 22 cost drivers. In addition to the COCOMO 
I1 cost drivers, three defect removal profile ratings are 
collected from software projects. The defect removal 

profiles describe the defect removal activities to be 
performed during a given software project and the 
degree of rigor with which they will be applied. The 
COQUALMO model then produces a prediction of the 
introduction and removal defects as well as the residual 
delivered defect density. The current COQUALMO 
model is based on expert opinion though two rounds of 
Delphi analysis conducted by the Center for Software 
Engineering (CSE) at the University of Southern 
California (usc).~,~ 

Defect Prediction Model and Methodoloav 

COQUALMO consists of two independent sub-models 
1) the Defect Introduction Model (DIM) and 2) the 
Defect Removal Model (DRM). Twenty-one of the 22 
COCOMO I1 cost drivers are used by the DIM along 
with internal baseline defect discovery rates to produce 
an estimate of the number for defects that will be 
introduced during the development of the software in 
question. The COCOMO I1 drivers and defect removal 
profiles are collected from past and ongoing projects 
via interviews with project personnel. The estimate 
categorizes the defects into three categories of 
introduction: 

Requirements 
Design 

0 Code&Test 

The results of the DIM are used as input to the DRM 
along with three defect removal profile ratings. Each 
defect removal profile represents a different 
classification of defect removal activity: 

Automated Analysis Activities 

0 (Traditional) Testing Activities 
Peer (People Oriented) Review Activities 

The rating for each of these profiles refers to the degree 
of rigor used in each classification. For example in the 
Peer Reviews categories, the rigor can range from no 
peer reviews at all (Lowest Rating) to full Fagan 
Inspections (Highest Rating). Each profile rating will 
impact the number of defects removed by estimating 
that a given percentage of the defects from the DIM 
estimate are removed. Each percentage associated with 
each selected rating is applied to the remaining defect in 
turn. (See Example 1) 

COQUALMO also distributes the removal of defects 
over the defect categories accordingly and displays 
defects introducdremovedmaining for each 
category of software being estimated. 

The estimates produced by the COQUALMO model are 
compared to actual defect introduction and removal 
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rates for the same categories. The actual defect rates 
presented in this paper were collected from past 
projects via JPL defect tracking system archives and 
interviews with project personnel for verification and 
clarification as needed. 

IF 

It is estimated that 100 defects will be 

introduced and defects are removed at the 
following rate 

Automated Testing removes 20% 
Peer Reviews remove 30% 

Testing removes 60% 

THEN 

The residual number of  defects delivered is 
Calculated as 

IOO*(I- .20)  * (1-.30) * (1-.60) 
(100 -20) * (1-.30) * (1-.60) 

80" (1-.30) * (1-.60) 
(80 - 24) * ( I  -.60) 

5 6 -  (1-.60) 
56 - 33.6 

22.4 

Example 1 : Defect Removal Calculation 

Finally, the data and predictions are analyzed in an 
attempt to identify consistent trends and correlations 
between defect predictions for projects and the project's 
actual defect introduction and removal patterns. The 
identification of such patterns aids in the adaptation and 
calibration of the defect prediction model to the JPL 
environment, as well as providing valuable trend 
information regarding defects to ongoing projects in the 
process. 

Preliminary Defect Prediction Results 

The preliminary results from the JPL efforts to model 
defect introduction and removal from a predictive 
standpoint involves the characterization of projects 
through COCOMO I1 cost driver descriptions and 
defect removal profile ratings. Currently, the base of 
data is small (4 data points) because the efforts towards 
the goal of defect density prediction are in their early 
stages. However, the ongoing effort is continuously 
providing more data and a statistically significant 
sample is expected in the near future. 

Under the caveat that the database is small and 

assuming a yet to be proven hypothesis that the current 
trends will continue, various trends with regard to the 
defect prediction model can be discussed. First, the 
model appears to reasonably discriminate defect types 
(requirements, design and code & test) in a manner 
consistent with phenomenon observed in actual 
historical defect data from past projects. (Figure 9) 
Next, there appear to be early indications of different 
levels of defect introduction and removal rates between 
flight software and ground-based software. (Figure 10) 
Finally, from Figure 9, it can be seen that the defect 
prediction model over-estimates the percentage of 
defects that will be introduced in requirements and 
design phases, while underestimating the number of 
defects that will be introduced in the coding phases. 
However, a consistent trend towards increased defect 
rates, as software development progress from one phase 
to another in the life cycle is readily observable. The 
discrepancies may be due to one or more various 
factors: 

Inaccuracy in the model's prediction 
Projects neglecting to fully document early 
lifecycle defect in the process of discovering 
and removing them 
Mischaracterization of defects as sets of 
coding defects that actually result from trying 
to cope with flawed designs or requirements. 
Difficulty in isolating defect introduction in 
early lifecycle stages (requirements and 
design) relative to later stages such as coding 
due to differing availabilities of mature tools 
and techniques and the fluid nature of early 
lifecycle decisions 

Percentage of Total Defects per Category 
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Average Defects per Work Month 
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Figure 10. Average Defects per Work Month 

Once it is properly calibrated, the defect prediction 
model can provide predictive metrics to a manager with 
reasonable estimates of resources needed to ensure the 
quality of the software, as well as to provide direction 
regarding the timing of the need for those resources and 
in what proportions. For example, if the information in 
Figures 9 and 10 are viewed together, along with 
average effort needed to repair defects, the overall 
resources needed to address defects can be effectively 
planned and employed during phases (requirements 
design code & test) where they are most likely to yield 
the most benefit in terms of software quality. 

Figure 11 illustrates an early view of the defect 
introduction rate as a function of schedule compression. 
Schedule compression, in this case, refers to the degree 

or amount of effort that is expended over a period of 
time. That is to say that, if "high" amounts of effort, on 
average, are expended per month of schedule time, the 
schedule is said to be more compressed than projects 
where the average effort expended per schedule month 
is lower. Many parametric software models offer 
direction regarding optimal schedule in terms of risk to 
on-time completion and budgetary constraints and 
staffing. The analysis suggested by Figure 11 relates 
schedule compression to the technical (as opposed to 
programmatic) risks. The preliminary trend in Figure 
11, made up of both flight and ground software, 
suggests that defect rates are positively correlated with 
increasing degrees of schedule compression. The data in 
Figure 11 may also be used to formulate metrics from 
the historical and predictive data for the purpose of 
resource planning. The defects-to-schedule- 

Defects to Schedule Compression 
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Figure 11. Defect by Work Months per 
Schedule Month 

compression relationship affords a manager the 
quantitative information necessary to make informed 
decisions about resource planning. 

The examination of defect metrics, in conjunction with 
other metrics such as cost, effort, schedule within an 
integrated metrics program facilitates improvement 
though recognition of trends in software process and 
management activities that must be considered together 
with quality to produce quality software on time and 
within budget. 

CONCLUSIONS 
As JPL evolves its software measurement program and 
develops a range of estimation, planning, and quality 
assessment models, it is expected to have a growing 
impact on estimation accuracy and software quality. 
Having access to historical data has allowed us to jump- 
start the JPL software measurement and modeling 
program by developing baseline engineering, planning, 
and quality models and identifying long-term trends. It 
would have required years to develop these models had 
we started from scratch. 

Integrating the historical databases presented difficulties 
in that the data was collected differently and the datum 
were defined differently with respect to how equivalent 
lines of code were defined or what effort should be 
included or left out of development effort. 

As the new software measurement database is 
developed and populated, it too will present challenges 
in that the metrics are collected to meet multiple 
objectives presented by the need to develop cost 

9 
American Institute of Aeronautics and Astronautics 



estimation models, cost management models, and defect 
models to improve process status and improvement 
objectives. 
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