
FLIGHT SOFTWARE TRENDS AND PATTERNS
IN THE AEROSPACE INDUSTRY: JPL LESSONS

LEARNED
Jairus M. Hihn

Karen Lum
John Powell

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91 109

Abstract-As in industry, JPL has experienced
numerous changes in how we develop both flight and
ground software. Software languages, design methods,
and development processes have all changed from what
they were in the early to mid 80’s. It used to be that our
spacecraft were flying hardware with a computer on
board. Today our spacecraft are more and more
becoming complex flying computers especially with the
advent of sophisticated fault protection and auto-
navigation software. Because software is playing a
more critical role in our deep space missions, there has
been a significant increase in interest in software at JPL.
As part of this new focus a number of activities have
been initiated to improve how we manage and how we
measure our software activities. Currently we are
validating and calibrating commercial parametric tools,
as well as developing our own models. As a result of
integrating our cost databases and engaging in an
extensive software metrics activity, it has become
possible to analyze JPL’s historical datasets for trends
in metrics. In this paper, we will summarize the
software trends and their impact on the cost of
developing flight and ground software.

INTRODUCTION

There has been an increase in interest in software at JPL
because software is playing a more critical role in our
deep space missions. Recently the Software Quality
Improvement (SQI) Project has been formed to achieve
and sustain excellence in software engineering at JPL to
enable mission success. It will enable and promote
software best practices, and leverage JPL experience in
software engineering in support of major software
projects, throughout the entire software life cycle. The
goal of the SQI Project is to establish an operational
software improvement program that results in the
continuous measurable improvement of software quality

at JPL. Its objectives include improving cost and
schedule predictability, improving the quality of
mission-critical software, reducing software defect rates
during testing and operations, increasing software
development productivity, promoting software reuse,
and reducing project start-up time.

As a result of the recent integration of our cost
databases, in support of the SQI project, it has become
possible to analyze the historical datasets for trends in
software development cost, productivity rates, as well
as some schedule and quality-related metrics. These
analyses are intended to support software managers by
providing a quantitative basis for informed decision-
making regarding their projects. Further, the value to
JPL of the trend analysis is expected to improve as the
lab engages in an extensive data collection activity over
the next few years. In conjunction with historical data
trend analysis, there has been a successful ongoing
effort to validate and calibrate commercial parametric
tools such as COCOMO, SEER-SEM and Price S as
well as developing our own models in an effort to
improve cost estimations for software projects at JPL.
There is also a major focus on developing a JPL version
of the COQUALMO model to provide predictive defect
introduction and removal estimates to support ongoing
quality assessment and planning throughout the
software lifecycle.

In this paper, we will summarize our activities as well
as various software trends at JPL and their impact on
the cost of developing flight and ground software. The
various trends to be discussed include:

0 Effort to size relationships
Various productivity trends
Size and effort trends over time (past 3
decades)

0 Defect rates (actual and predicted) as they

1
American Institute of Aeronautics and Astronautics

pertain to schedule and effort.
These relationships will also be compared and
contrasted across to major software categories at JPL,
specifically flight software and ground software.

DATABASES AND METHOD~LOGY
The data used in this study is the integration of data
from various sources that has been collected by JPL’s
Cost, Risk & Systems Analysis Group since 1986. The
major sources for the data are:

NASA Software Cost Database (1986 - 1990)
Consists of 100 ground and 20 flight data points at
subsystem-level from all NASA Flight Centers,
collected post delivery

JPL Software Resource Center (SORCE) Software
Cost Database (1989 - 1991)

Contains 49 data points at assembly-level, collected
at time of delivery

JPL Deep Space Network (DSN) Software Cost
Database (1990 - 1997)

Contains over 15 DSN subsystem upgrades,
collected at Preliminary Design Review and each
major delivery

JPL SQI Foundation Measures Database (2001 - on-
going)

Consists of 8 JPL flight software subsystems
Defect data from 4 JPL projects

The majority of the data was collected to support a JPL
version of the COCOMO software cost estimation
model. The NASA, SORCE and DSN software cost
databases were collected using a survey instrument to
collect inputs for the COCOMO 81 version of the
model.

This was supplemented to obtain additional information
on schedule and effort allocation across phases and
activities. Obtaining this information typically required
interviews with software managers and technical
personnel ranging from 1 person for 1-2 hours per
record in the NASA database to interviewing from 3-6
persons for 1-2 hours with an additional 1-2 work
weeks in analyzing the software projects’ schedules,
estimates, and official budgets. This data was collected
from 1986 through 1997.

In 2001 when the SQI Measurement Program was
initiated, data was collected to support the use of
COCOMO I1 and SEER-SEM for cost estimation and a
range of software engineering models for establishing
baselines for planning and defect analysis. There exist
a significant overlap between the input data required for
COCOMO I1 and SEER-SEM. Therefore,

questionnaires that were originally designed for
COCOMO I1 input data collection were reviewed and
adapted for use in an effort to collect SEER-SEM data
simultaneously. The revised survey was subsequently
used in interviews with key software people of the
various projects. The similarity of SEER-SEM and
COCOMO I1 pararneterdcost drivers facilitated the
ability to map survey answers (data) to both models.

The survey instrument asked the key software people to
rate their piece of the project in various categories, from
team capabilities, software reliability, complexity, and
tool usage. Multiple (2-3) interviewers participated in
each of the interviews conducted. Then interviewers
compared notes taken during the interviews and cost
driver ratings derived from conversation with the
interviewee. All cost driver-rating discrepancies were
resolved through discussion between the interviewers.
Discrepancies were noted and, when appropriate, ranges
were formed for input parameters when full resolution
could not be reached. Using the results from these
interviews along with historical data, the models’ inputs
were entered into the associated implementation tools
(software) for each. Follow-up interviews were
conducted as necessary for the purpose of data conflict
resolution and clarification with regard to project scope
and CSCI applicability. Past projects were selected in
order that actual cost and effort data could be collected
to compare with the estimates produced by the models.

Some data had to be scrubbed. For example, different
projects include different activities and life cycle phases
in their effort actuals. To make the records comparable,
adjustments were required. To discount reused and
inherited code, equivalent lines were estimated to get an
indication of the actual number of lines written and
modified.

This yielded a total of 190 data records covering ground
and flight software implementations that completed
from 1980 through projects that will not be completed
until 2008. The datum included in the integrated
database are start date, completion date, equivalent
source lines of code (physical lines, no comments, no
blanks), effort in work months, schedule length,
application category (flight or ground), and whether the
data reflected actuals or estimate-to-complete. Not all
records have data for all fields.

Due to gaps in data collection over the years there are
gaps in the records, such that there are no ground
software records post 1997 and no flight software
records from 1990-1995.

2
American Institute of Aeronautics and Astronautics

COST PREDICTION MODELING
As part of the SQI Project’s goal to improve cost
predictability, a study to evaluate three models -
COCOMO 11, SEER-SEM, and PRICE S - was initiated
in 2001. JPL, because its primary focus is developing
and operating deep space science missions, has many
characteristics that make it unique from other
organizations that develop software. At the same time,
there can be many things in common. Therefore, the
study was started to determine whether some cost
estimation tools could be used “out of the box” or even
if they were applicable to the JPL environment at all.

These models have been validated for both flight and
ground software development at JPL using historical
data consisting of 10 flight software projects and 9 DSN
ground software projects. The Post Architecture
COCOMO I1 model, SEER-SEM, and PRICE S have
been assessed “out of the box” and predict software
costs reasonably well in the JPL environment’.

All models predicted better for flight software than
ground software in general. COCOMO I1 had strong
results for both flight and ground software. SEER
predicted well for flight software but not as well for
ground. (Figures 1 and 2) A validation of the SEER-
SEM model using only its knowledge bases for input
parameters was also performed. It was found that using

only the knowledge bases for performing estimates did
not correspond well to the JPL environment. PRICE S
was the strongest predicting model for flight software
and ground software. However, its prediction range is
wider than COCOMO 11’s.

It was found that all three of the “uncalibrated” models
being evaluated - COCOMO 11, SEER-SEM, and
PRICE S - were able to predict within similar ranges
based on the measures we used to evaluate the models.
On average 50% of the model estimates predicted
within 30% of the actuals. Given that these models
were unadjusted for JPL’s local environment, they
performed much better than originally expected.

Although the models predict within a reasonable range,
it is our goal after adjusting the models - by either
calibration or some other consistent method - to get
80% of the estimates within 30% of actual effort.
Calibration of the models will require collecting
additional data. The performance is expected to
improve as more data is collected. This data collection
activity will not only enable more precise calibration of
the software cost models, but will enable the analysis of
historical trends.

450 %

400 %

350 %

300 %

250 %

200 %

150%

100%

50%

0%

-50%

-1 00%

Comparison of Uncalibrated Models‘
Accuracy for Flight Software

Model
o Within PredI.30) xOutside Predc.30)

Figure 1. Uncalibrated Flight Software Accuracy

3
American Institute of Aeronautics and Astronautics

Comparison of Uncalibrated Models' Accuracy
for Ground Software

500 %

460%

400%

Fl 360r 4 300%

250%

e 200%

5 50%

z
5 100%

Ly 150%
U

0%

-50 %

-100 %
K b a s e

Model
Within PrsdC.331 x Odsids PredC . 3 0 3

Figure 2. Uncalibrated Ground Software Accuracy

COST METRICS TRENDS

Software Size and Lanauaaes

There is an expected trend of significant software size
growth over time for flight and instrument software as
observed in Figure 3. While ground software shows a
decline in average size, it is not statistically significant.
The corresponding time period also shows a migration
towards C and C++ from other programming languages
in general. (Figure 4) Fortran is decreasing in use for
development somewhat but still remains in significant
use. This appears to be due to the persistent amount of
software being maintained that was written in Fortran.
(Figure 5) While C and C++ are the language of choice
for software development at JPL, critical software
functionality, implemented in Fortran is essential to
many missions and software needs.

Productivity Trends

Productivity trends have been summarized using two
different perspectives. The first (Figure 6) shows just
the average productivity (SLOC/work-month) for flight,
instrument, and ground software for the eighties,
nineties and 2000-2008. Here it can be seen that
productivity has been increasing for all software and
quite dramatically for flight software over the past
twenty years. Between the eighties and the nineties,
ground software productivity only increased by

approximately 36%, while flight and instrument
software increased productivity by 55%-63%. This is
most likely a reflection of the huge increase in
computing capacity of flight-qualified processors and
the move to the use of modern programming Languages
such as C instead of Assembly. In the eighties, most of
the flight software was written in Assembly while in the
nineties there was a shift to C and Ada, which became

Average Size Trends

3 rn g

200000

150000

100000

50000

0

m 1990-1 999
02000-2008

Flight Ground Instrument
SoMvan Category

Figure 3. Size over Software Category by Decade

4
American Institute of Aeronautics and Astronautics

80%

70%

60%

50%

40%

30%

20%

10%

0%

Software Under Development

fd 1995
1.2002

Figure 4. Percent Software over Language by Time

possible with the more powerful processors. Estimates
for the current decade indicate productivity for flight
software will decrease. This could be misleading, as
software size tends to be underestimated. However, it
also could be a reflection of the shift towards higher-
quality, more reliable software and away from faster,
better, cheaper, which, with hindsight, clearly reduced
software reliability and increased risk.

Figure 7 is another way to look at productivity trends.
Displayed is productivity against total effort in work-
months divided by schedule length. This is an indicator
of how many people have to coordinate on average over
the life of the project. It can also be used as an
indicator of schedule compression, trying to get too
much work done in too little time. Five different
relationships were derived, Ground ~ O ’ S , Ground go’s,
Flight 80s, Flight go’s, and Flight 2000+. In all of these
relationships it can be seen that as development effort
over schedule becomes tighter, development becomes
less productive. As time increases, productivity versus
compressed effort has been increasing, for both flight
and ground software, although flight software in general
has a lower productivity versus effort over schedule
than ground software.

Software Under Maintenence

Figure 5. Percent of Software Under Maintenance by
Language over Time

Development Productivity Trends

350

300

t fl 250

0 8-1 150
f “

t
4 50

0

II 1980.1 98s
1990-1 99s 17 020008

Flight Software Ground Software InstNment Somare
Softwara Type

Figure 6. Productivity over Software Category by
Time Period

5
American Institute of Aeronautics and Astronautics

Productivity vs. EfforVSchedule
500

450

400

350

f 300

-I
a 250

P 9
3 200

H
150

100

50

0
0 5 10 15 20 25 30 35 40 45 50

WMlSchedule Duration

Figure 7. Productivity versus Effort over Time by Decade

Yize versus Effort reuse and no auto code generation. Most programming
was done in languages such as Assembly,-and Fortran,
with lots of declarations. The result was that a line
written tended to be a line delivered. In the 1990s
object-oriented languages and CASE tools allowed for
greater inheritance and reuse.

30th ground and flight software show trends of moving
?om decreasing to increasing returns to scale from the
1980s to the 1990s. (Figure 8) This shift can stem
from the change in characteristics of software
development over time. In the 1980s, there was little

Effort vs. Size
3500

3000

2500 -
I2 2000 =! g

1500
42
Ly

1000

500

0

0 100 200 300 400 500 600
Sottvvero Site (KSLOC)

~~

Figure 8. Effort over Size by Decade
6

American Institute of Aeronautics and Astronautics

In addition, most of the flight projects in the 1990s
consisted of projects that may not have properly
adjusted for reuse. Although software reuse has
increased over time, it is difficult to sort out. The
exponent on the Size variable (Table 1) may not
necessarily be less than 1.0 in terms of true equivalent
lines of code.

Flight 1980s
Flight 1990s

Table 1. Effort Equations
I I Equation 1 R-squared 1

E = 8 . 2 ~ ~ ~ ~ ~ 0.68

E = 15.3s0.76 0.46
Flight 2000-08 E = 7 . 8 ~ 0 . 9 8 0.55
Ground 1980s E = 4.7~1.01

As expected, the fixed costs for flight software was
higher than ground software in both the 1980s and
1990s. The fixed cost of software development,
represented by the constant term, has increased from the
1980s to the 1990s for ground software. This increase
in fixed cost may suggest that the reduction in marginal
cost is justified as the same pattern can be seen for
flight software. Given that there were so few data for
flight software in the 2000-08 time period, there is no
significant evidence for a fixed cost decrease in the
2000s.

0.91

The bottom line is that no matter how one looks at the
software metrics, there has been a marked increase in
development productivity.

Ground 1990s I E = 8 . 9 ~ 0 . 7 ~

DEFECT PREDICTION MODELING

0.56

One of the approaches that is currently being explored
at JPL for defect prediction with regard to defect
densities involves the adaptation and calibration of the
COQUALMO model for use in the JPL environment.2
The COQUALMO model is an extension to the
COCOMO I1 model that seeks to predict software
defect densities based on early lifecycle
 characteristic^.^'^'^.^ The model is regarded as an
experimental portion or the Software Quality
Improvement (SQI) Project’s measurement and
benchmarking activities within the larger framework of
the Metrics program at JPL. These characteristics
include a subset of the input data needed to perform
cost estimations using the COCOMO I1 model, namely
21 of the 22 cost drivers. In addition to the COCOMO
I1 cost drivers, three defect removal profile ratings are
collected from software projects. The defect removal

profiles describe the defect removal activities to be
performed during a given software project and the
degree of rigor with which they will be applied. The
COQUALMO model then produces a prediction of the
introduction and removal defects as well as the residual
delivered defect density. The current COQUALMO
model is based on expert opinion though two rounds of
Delphi analysis conducted by the Center for Software
Engineering (CSE) at the University of Southern
California (usc).~,~

Defect Prediction Model and Methodoloav

COQUALMO consists of two independent sub-models
1) the Defect Introduction Model (DIM) and 2) the
Defect Removal Model (DRM). Twenty-one of the 22
COCOMO I1 cost drivers are used by the DIM along
with internal baseline defect discovery rates to produce
an estimate of the number for defects that will be
introduced during the development of the software in
question. The COCOMO I1 drivers and defect removal
profiles are collected from past and ongoing projects
via interviews with project personnel. The estimate
categorizes the defects into three categories of
introduction:

Requirements
Design

0 Code&Test

The results of the DIM are used as input to the DRM
along with three defect removal profile ratings. Each
defect removal profile represents a different
classification of defect removal activity:

Automated Analysis Activities

0 (Traditional) Testing Activities
Peer (People Oriented) Review Activities

The rating for each of these profiles refers to the degree
of rigor used in each classification. For example in the
Peer Reviews categories, the rigor can range from no
peer reviews at all (Lowest Rating) to full Fagan
Inspections (Highest Rating). Each profile rating will
impact the number of defects removed by estimating
that a given percentage of the defects from the DIM
estimate are removed. Each percentage associated with
each selected rating is applied to the remaining defect in
turn. (See Example 1)

COQUALMO also distributes the removal of defects
over the defect categories accordingly and displays
defects introducdremovedmaining for each
category of software being estimated.

The estimates produced by the COQUALMO model are
compared to actual defect introduction and removal

7
American Institute of Aeronautics and Astronautics

rates for the same categories. The actual defect rates
presented in this paper were collected from past
projects via JPL defect tracking system archives and
interviews with project personnel for verification and
clarification as needed.

IF

It is estimated that 100 defects will be

introduced and defects are removed at the
following rate

Automated Testing removes 20%
Peer Reviews remove 30%

Testing removes 60%

THEN

The residual number of defects delivered is
Calculated as

IOO*(I- .20) * (1-.30) * (1-.60)
(100 -20) * (1-.30) * (1-.60)

80" (1-.30) * (1-.60)
(80 - 24) * (I -.60)

5 6 - (1-.60)
56 - 33.6

22.4

Example 1 : Defect Removal Calculation

Finally, the data and predictions are analyzed in an
attempt to identify consistent trends and correlations
between defect predictions for projects and the project's
actual defect introduction and removal patterns. The
identification of such patterns aids in the adaptation and
calibration of the defect prediction model to the JPL
environment, as well as providing valuable trend
information regarding defects to ongoing projects in the
process.

Preliminary Defect Prediction Results

The preliminary results from the JPL efforts to model
defect introduction and removal from a predictive
standpoint involves the characterization of projects
through COCOMO I1 cost driver descriptions and
defect removal profile ratings. Currently, the base of
data is small (4 data points) because the efforts towards
the goal of defect density prediction are in their early
stages. However, the ongoing effort is continuously
providing more data and a statistically significant
sample is expected in the near future.

Under the caveat that the database is small and

assuming a yet to be proven hypothesis that the current
trends will continue, various trends with regard to the
defect prediction model can be discussed. First, the
model appears to reasonably discriminate defect types
(requirements, design and code & test) in a manner
consistent with phenomenon observed in actual
historical defect data from past projects. (Figure 9)
Next, there appear to be early indications of different
levels of defect introduction and removal rates between
flight software and ground-based software. (Figure 10)
Finally, from Figure 9, it can be seen that the defect
prediction model over-estimates the percentage of
defects that will be introduced in requirements and
design phases, while underestimating the number of
defects that will be introduced in the coding phases.
However, a consistent trend towards increased defect
rates, as software development progress from one phase
to another in the life cycle is readily observable. The
discrepancies may be due to one or more various
factors:

Inaccuracy in the model's prediction
Projects neglecting to fully document early
lifecycle defect in the process of discovering
and removing them
Mischaracterization of defects as sets of
coding defects that actually result from trying
to cope with flawed designs or requirements.
Difficulty in isolating defect introduction in
early lifecycle stages (requirements and
design) relative to later stages such as coding
due to differing availabilities of mature tools
and techniques and the fluid nature of early
lifecycle decisions

Percentage of Total Defects per Category

90%

80%

70%

60%

50%

40%

30%

20%

1 w/o
OYO

e q m l n Code I

Actual
m Predicted

Figure 9. Defect Percentages by Category

8
American Institute of Aeronautics and Astronautics

Average Defects per Work Month

0.45
0.4

f O::

I!

2 0.1

r 0.25
* 0.2

p 0.15

0

0

0.05

0
ht&Disc Remved &mining

night
Ground

Figure 10. Average Defects per Work Month

Once it is properly calibrated, the defect prediction
model can provide predictive metrics to a manager with
reasonable estimates of resources needed to ensure the
quality of the software, as well as to provide direction
regarding the timing of the need for those resources and
in what proportions. For example, if the information in
Figures 9 and 10 are viewed together, along with
average effort needed to repair defects, the overall
resources needed to address defects can be effectively
planned and employed during phases (requirements
design code & test) where they are most likely to yield
the most benefit in terms of software quality.

Figure 11 illustrates an early view of the defect
introduction rate as a function of schedule compression.
Schedule compression, in this case, refers to the degree

or amount of effort that is expended over a period of
time. That is to say that, if "high" amounts of effort, on
average, are expended per month of schedule time, the
schedule is said to be more compressed than projects
where the average effort expended per schedule month
is lower. Many parametric software models offer
direction regarding optimal schedule in terms of risk to
on-time completion and budgetary constraints and
staffing. The analysis suggested by Figure 11 relates
schedule compression to the technical (as opposed to
programmatic) risks. The preliminary trend in Figure
11, made up of both flight and ground software,
suggests that defect rates are positively correlated with
increasing degrees of schedule compression. The data in
Figure 11 may also be used to formulate metrics from
the historical and predictive data for the purpose of
resource planning. The defects-to-schedule-

Defects to Schedule Compression

180 e*gg

0
0 5 10 15 20

Average WM per Schedule Month

Figure 11. Defect by Work Months per
Schedule Month

compression relationship affords a manager the
quantitative information necessary to make informed
decisions about resource planning.

The examination of defect metrics, in conjunction with
other metrics such as cost, effort, schedule within an
integrated metrics program facilitates improvement
though recognition of trends in software process and
management activities that must be considered together
with quality to produce quality software on time and
within budget.

CONCLUSIONS
As JPL evolves its software measurement program and
develops a range of estimation, planning, and quality
assessment models, it is expected to have a growing
impact on estimation accuracy and software quality.
Having access to historical data has allowed us to jump-
start the JPL software measurement and modeling
program by developing baseline engineering, planning,
and quality models and identifying long-term trends. It
would have required years to develop these models had
we started from scratch.

Integrating the historical databases presented difficulties
in that the data was collected differently and the datum
were defined differently with respect to how equivalent
lines of code were defined or what effort should be
included or left out of development effort.

As the new software measurement database is
developed and populated, it too will present challenges
in that the metrics are collected to meet multiple
objectives presented by the need to develop cost

9
American Institute of Aeronautics and Astronautics

estimation models, cost management models, and defect
models to improve process status and improvement
objectives.

ACKNOWLEDGEMENT
The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

REFERENCES
[l] Karen Lum, John Powell, and Jairus Hihn,
“Validation of Spacecraft Software Cost Estimation
Models for Flight and Ground Systems,” Intemational
Society of Parametric Analysts 2002 Conference
Proceedings, May 2002.

[2] John D. Powell, “An Early Look at COQUALMO
at JPL”, COCOMO/SCM 17 17* International Forum
on COCOMO and Software Modeling, Los Angeles
CA, October 22-25,2002.

[3] Bany Boehm et al., Sofrware Cost Estimation with
COCOMO II, Prentice Hall Inc., Upper Saddle River,
NJ 07458,2000.

[4] Sunita Devnani-Chulani, “Bayesian Analysis of
Software Cost and Quality Models,” Ph.D. Dissertation,
University of Southern California 1999.

[5] Sunita Devnani-Chulani and Barry Boehm,
“Modeling Software Defect Introduction Removal:
COQUALMO (Constructive QUALity Model)”, USC-
CSE-99-5 10.

[6] Sunita Devnani-Chulani, “Modeling Software
Defect Introduction,” Proc. California Sofrware
Symposium ‘97, USC-CSE-98-503.

[7] Sunita Devnani-Chulani, “Incorporating Bayesian
Analysis to Improve the Accuracy of COCOMO I1 and
Its Quality Model Extension,” USC-CSE-98-506

[8] Sunita Devnani-Chulani, “Results of Delphi for the
Defect Introduction Model (Sub-Model of the
Cost/Quality Model Extension to COCOMO II),” USC-
CSE-97-505

Jairus Hihn has a Ph.D. in Economics with principle
application areas in econometrics and mathematical
economics. He has been developing estimation models
and providing software and mission level cost
estimation support to JPL’s Deep Space Network and

flight projects for the past jifreen years, Jairus is
currently the lead for the Software Quality
Improvement Project’s Measurement and Estimation
(M&E) Element, which is establishing a laboratory
wide software metrics and software estimation program
at JPL. M&E’s objective is to enable the emergence of
a quantitative sofhyare management culture at JPL.

In a previous incarnation, Jairus was on the Faculty at
UC Berkeley in the Department of Agricultural and
Resource Economics where he co-developed a new
statistical technique based on the semi variance of a
probability distribution for use in estimating
agricultural production and income risks; was the co-
author on several papers which f o m l l y applied
catastrophe theory to the analysis of political instability
in third world countries using both non-parametric and
maximum likelihood methods. He has extensive
experience in simulation and Monte Carlo methods
with applications in the areas of decision analysis,
institutional change, R&D project selection cost
modeling, and process models.

Karen Lum is involved in the collection of software
metrics and the development of sofrware cost estimating
relationships at the Jet Propulsion Laboratory. She
has a MBA in Business Economics and a Certificate in
Advanced Information Systems from the California
State University, Los Angeles. She has a BA in
Economics and Psychology from the University of
California at Berkeley. She is one of the main authors
of the JPL Sofhyare Cost Estimation Handbook.
Publications include Best Conference Paper for ISPA
2002: “Validation of Spacecrafr Sofrware Cost
Estimation Models for Flight and Ground Systems.”

John D. Powell holds a M.S. in Computer Science from
West Virginia University and is a sofrware quality
assurance researcher at the California Institute of
Technology’s Jet Propulsion Laboratory (JPL) in the
Quality Assurance ofice. Currently he pe$onns
research in the area of Quality/Cost Estimation and
Prediction as well as Formal Methods research for
efforts at JPL Prior to his work at JPL, John worked
as a System Sofrware N&V Analyst for NASA’s prime
IV&V contractor (Titan-Averstar) performing IV&V
analysis on the Redundancy Management and Control
systems for the Space Shuttle’s Checkout Launch and
Control System (CLCS). Prior to that, at the NASA
Goddard IV&V Facility, John perjormed research
under the Intelligent Systems Initiative exploring
alternatives to traditional model checking in
conjunction with West Virginia University’s Sofrware
Research Laboratory (SRL).

10
American Institute of Aeronautics and Astronautics

