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Abstract 

Four algorithms for simulating flicker FM phase noise ( f -3  spectrum) are given, two old and 
two new. Their Allan deviation and mean square time interval error (MSTIE) are examined. 
The MSTIE shows that one of the old algorithms has deficient long-term phase deviations on 
average. The Allan deviation does not reveal this deficiency. 

1 Introduction 
By a flicker FM model we mean a stochastic process that has (in a sense that can be made precise) 
a spectral density that is asymptotically equal to const /f3 as f -+ 0. Many quartz oscillators show 
flicker FM phase noise over wide intervals of Fourier frequency, as evidenced by Allan deviation 
plots that are approximately flat over two or more decades of averaging time. Therefore, simulations 
of systems containing quartz oscillators need to include flicker FM generators. This is not a simple 
matter; for example, a single low-order filter applied to white noise cannot stay close to an odd 
spectral power over a wide enough frequency range. Following are three classes of existing flicker 
FM generation algorithms. They all have running time of order N log N, where N is the number 
of points to be generated. 

0 Barnes-Jarvis generators [l]. White noise is applied to a ladder of first-order filters con- 
structed to have an approximate f-1/2 response over a frequency range whose low end de- 
pends on the number N of points to be generated. The result is a stationary process with 
approximate spectrum f-l over this range. One can obtain f-3 noise by a cumulative sum 
operation on the f-l noise. Because these algorithms generate the output sequentially, they 
take little memory. 

0 Discrete spectrum (DS) generators. Complex-valued Hermitian white noise is generated in 
the frequency domain (the Fourier transform of time-domain white noise), multiplied by f - I l 2  
or f-3/2,  and transformed back to the time domain. This is a special case of a general method 
for generating colored noise; the author has no citation for its actual use to generate flicker 
FM, but Ref. 3 of [2] cites a suggestion for its use. 

*This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract 
with the National Aeronautics and Space Administration. 
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0 Impulse response (IR) generators, discrete-time analogs of Riemann-Liouville fractional inte- 
gration (see [2] for continuous-time power-law noise models). White noise is convolved with 
a causal filter that represents summation of order 1/2 or 3/2. The Kasdin-Walter algorithm 
[3, 41, which is in current use, performs the discrete convolution in N log N time by using the 
FFT. 

Our principal aim here is to compare a DS generator, an IR generator, and two new FFT-based 
flicker FM generators that use the recent method of circulant embedding for exact simulation of 
stationary processes [5, 6, 7, 81. Two properties are used for the comparison: 1) Allan deviation; 2) 
a form of mean square time interval error with a straight line removed. Lest this work be merely 
a discussion of models and algorithms, we also compare the generator outputs to phase residuals 
of two precision quartz oscillators that were chosen for flatness of their Allan deviations. We shall 
expose a deficiency of the IR generator, the same deficiency that a Barnes-Jarvis generator has if it 
is not properly initialized [9]: the generator’s long-term phase excursions are too small on average. 
Nevertheless, as Schmidt also found [lo], one can work around this deficiency by generating twice 
as many points as needed and using only the second half of the output. 

2 Two flicker FM phase models 
Before defining the four generators, we define two flicker FM models, against which the generators 
can be compared. Each model is a discrete-time stochastic process x, with sample period 1, 
normalized so that its two-sided spectral density S, (f), I f 1  5 1/2, is asymptotic to ) 2 7 ~ f l - ~  as 
f -+ 0. In the Conclusions, we give the formula for scaling these normalized models and generators 
to agree with the conventions used in time and frequency. Although x, is nonstationary, its second 
increment A2x, = x, - 2xn-1 + x,-2 is a stationary, mean-zero, Gaussian process. The definition 
of x, is ambiguous in that any constant phase and frequency can be added to it; to specify z, 
exactly, we can fix two values x, and Xb. The two models differ mainly in their spectral densities 
near the Nyquist frequency f = 1/2 (see Fig. 2). 

2.1 FD(3/2) (fractional difference) model 

For each value of the real parameter 6, there is a process called FD(6) [ll, 121 with spectral density 
12s in7~f l -~~  (in a sense to be explained for S = 3/2). This family has the convenient property that 
if x, is an FD(S), then Axn is an FD(S - 1). (The frequency response of the difference operator A 
is 12sin~fl . )  In particular, FD(-1/2) is defined as a stationary, mean-zero, Gaussian process z, 
with spectral density 12s in~f l .  For its autocovariance (ACV) sequence, s,,, = Ezjzj+,, we have 

By definition, x, i s  a n  FD(3/2) process i f  A2x, is an  FD(-1/2) process. Then x, is a process 
with stationary second increments, and S, (f)  = ) 2 s i n ~ f ) - ~  in the following sense: if H is a 
finite moving-average filter that contains A2 as a factor, then Hx, is stationary, and SH, (f) = 
( H  (e-z2rf)  l 2  S, (f), where H ( z )  is the z-transform of H .  
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It can be proved that an FD(3/2) process z, has the following representation: 

where n1 is any positive integer, u, is a standard white noise sequence (independent Gaussians 
with mean 0 and variance l), and a, is defined by the power series (1 - z ) -3 /2  = C ~ = o a n z n ;  thus 
a, = (-l), (-:/’), and a, = 0 for n < 0 by convention. One can show that a, - n1/2/l? (3/2) as 
n --f 00. 

2.2 

Starting with a continuous-time process z ( t )  with stationary second increments and spectral density 
1 2 ~ f l - ~  for all real nonzero f ,  we sample it at the integers to get a discrete-time process z (n). Its 
second increment, z (n) = A2z (n) ,  is stationary and has ACV 

Sampled PPL (pure power law) model 

s, (n) = s, (n + 2) - 4s, (n + 1) + 6s, (n) - 4s, (n - 1) + s, (n - 2 ) ,  (3) 

where s, ( t )  is the generalized ACV [13, 141 of z ( t ) :  

The spectral density of the sampled process is not 1 2 ~ f l - ~ ,  but 
00 

3 Two general algorithms 
Three of the generators under discussion can be quickly given in terms of two algorithms of wider 
utility; the second algorithm uses the first. With slight modifications, these descriptions follow 
Percival and Walden [ 5 ] .  Although we use a complex FFT, an equivalent real version can also be 
used. 

3.1 Discrete spectrum algorithm 

Purpose: Generate values of a real stationary Gaussian process with a desired discrete spectrum. 

spectral density at frequency fk = I C /  ( 2 N ) .  
Inputs: N (a power of 2), nonnegative numbers So, 5’1, . . . , SN,  where s k  is the desired two-sided 

Outputs: Random variables zo, z l , ,  . . . , z~ such that 

Procedure: 
Generate Uo, VI,. . . , U N ,  VI, . . . , Vn-1 as independent standard Gaussians. 
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Generate 20,. . . , Z2N-l (real-valued) as &% times the inverse FFT of 20,. . . , 2 2 ~ - 1 .  In 
other words, 

2N-1 
Z, = (2N)-1’2 z k  exp (22Tfkn). 

k=O 
Keep the values 20,. . . , ZN (or any N + 1 consecutive values). 

Remark: The full 2N-vector z, is a 2N-periodic stationary process with spectrum S k ;  this, 
however, is not usually what one wants. 

3.2 Circulant embedding algorithm 

Purpose: Generate values of a real stationary Gaussian process with a given autocovariance. 
Inputs: N (a power of 2), real numbers so,. . . , S N ,  the desired autocovariance up to lag N .  
Outputs: Random variables ZO, ZI,, . . . , ZN such that E z m k  = Sn-m for 0 5 m 5 n 5 N .  
Procedure: 

Let S“, = s, for n = 0 to N, S”2N-n = s, for n = 1 to N - 1 (even circular extension of s,). 
Remark: “Circulant” refers to the covariance matrix that corresponds to 5,. 
Let 30,. . . ,32N-1 be the FFT of 90,.  . . , S“2N-1. (Then & is real-valued.) 
If any 3 k  < 0, the method fails. (This means that the extended circular sequence is not 

Use 30,. . . ,SN in the discrete spectrum algorithm to generate the 2,. 
positive definite.) 

Remark: The ,!& are an artificial construct of the algorithm. 

4 Four flicker FM generators 

All these generators produce approximately N phase values x,, where N is a power of 2. The first 
two are approximate; they do not simulate either target model exactly. The last two give exact 
simulations of the two target models. 

4.1 DS - discrete spectrum 

Let fk = k/(2N). Run the discrete spectrum algorithm with input so = 0, SI, = ( 2 ~ f k ) - ~ ,  
k = 1,. . . , N, and output X O ,  . . . , X N .  (One could also use s k  = ( 2 s i n ~ f k ) - ~  to approximate the 
FD(3/2) model more closely.) 

4.2 IR - impulse response 

This generator is an approximate simulation method for the FD(3/2) model. Its output is given 
by the formula 

n 

xn = C a n - j u j ,  n = 1,. . . , N ,  
j=1 

where a, is defined after (2), and u1,. . . , U N  are independent standard Gaussians. This convolution 
is carried out by zero-padding the sequences to length 2N, Fourier transforming them, multiplying 
the transformed sequences, and inverse transforming the result. For details, see [3]. Observe that 
(6) is just one part of (2). 
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4.3 FD - fractional difference 

This generator is an exact simulation of N + 3 values z, of the FD(3/2) model. Run the circulant 
embedding algorithm using the ACV (1) for the input so, .  . . , SN, and 20,. . . , ZN as output. It can 
be proved that the algorithm succeeds (the ACV satisfies Craigmile's criterion [SI). This produces 
an exact realization of N + 1 values of FD(-1/2). Then perform two cumulative summations: 

y, = y,-~ + z,-l 
x, = z,-1 + yn-l 

for n = 1 to N + 1, 
for n = 1 to N + 2. 

The initial values yo and 20 are arbitrary, and may be set to zero. 

4.4 

This generator is an exact simulation of N + 3 values of the sampled PPL model. It is identical 
to the FD generator just described except that the ACV (3) is used in place of (1). Again, it can 
be proved that the algorithm succeeds. There is one complication: to avoid catastrophic roundoff 
error in (3), use the asymptotic approximation 

PPL - pure power law 

in place of (3) whenever n 2 35. 

5 Comparisons 
We compare the four flicker FM generators with each other and with the phase residuals of two 
quartz oscillators (Oscilloquartz and CMAC) that were compared once per second against hydrogen 
masers. The test runs were chosen for flatness of Allan deviation between 1 and 1000 seconds'. 

Figure 1 shows a sample output of the four generators with N = 1024. Also shown are the first 
1025 phase residuals of the quartz oscillators, scaled up as explained in the section below on Allan 
deviation. The exact generators are both initialized so that zo = z1 = 0. The IR output starts 
with a small nonzero value of z1. The DS output, which is a sample of a stationary process, has 
no special initial value. 

Figure 2 shows the spectral density of the two target models along with the discrete spectrum 
of the DS generator for N = 32. The spectral densities, multiplied by ( 2 ~ f ) ~ ,  are plotted on a 
linear scale against f .  As the next section shows, the rise in the sampled PPL spectrum (5) near 
the Nyquist frequency is just right to make its Allan deviation exactly flat for all integral 7. The 
DS spectrum actually has too little high-frequency power for this purpose, the FD spectrum too 
much. For most purposes, though, these high-frequency deviations are insignificant. 

5.1 Allan deviation 

Figure 3 shows the theoretical Allan deviation (lines) and the square root of measured Allan variance 
(small dots), averaged over 10000 trials, for the four generators with N = 1024. Also shown are 
the measured Allan deviations (symbols) of the quartz oscillators, normalized so that cy (64s) = 
d m  = 0.664, the theoretical value assumed by the PPL model for all T .  The ~7 axis has an 
expanded linear scale to bring out the differences among the plots. The IR generation was actually 

'Thanks to A1 Kirk for making these tests available. 
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performed with N = 2048; IR1 refers to the first half of the generated sequence, which is equivalent 
to IR with N = 1024; IR2 refers to the second half. We see the expected minor deviations from 
flatness for small T, and an insignificant droop by DS and IR1 at T = 512. The PPL line is exactly 
flat. The Allan variance indicates little difference among the generators. 

5.2 Two-point MSTIE 
Suppose that the phase x ( t )  of a clock is measured at times t o  - 71 and t o .  For the purpose of this 
discussion, the mean square time interval error of a clock (MSTIE) after a delay T is defined by 

MSTIE ( T , T ~ )  = E 

which is the mean square error of linear extrapolation from the two phase measurements. We assume 
that it is independent of t o ;  this is so for all processes x ( t )  with stationary second increments. 
Although the method of phase calibration is crude, this measure serves the purpose of showing the 
variance of the long-term phase deviations as we go farther and farther from a fixed calibration 
interval. (See [15] for a discussion of more sophisticated calibrations.) Figure 4 plots theoretical and 
average measured values of MSTIE(T,T~) /T’ against T with 7 1  = 10 for the flicker FM generators 
and the quartz oscillators, normalized as before. The MSTIE for the oscillators was measured by 
averaging the squared extrapolation error over t o  with T and 7 1  fixed; the averaging time was about 
45000 s for the Oscilloquartz, 129000 s for the CMAC. All the curves except IR1 show the same 
asymptotic T-’ [l + In ( T / T ~ ) ]  behavior that is calculated for the PPL model [9], with a tiny droop 
at the largest 7 for the DS generator. The IR2 curve cannot be distinguished from the FD curve, 
but the IR1 curve droops significantly as T increases. 

6 Conclusions 
To simulate samples x ( ~ 0 )  of flicker FM phase (time) x ( t )  with one-sided frequency spectrum 
SY+ (f) = h-lf-’, Allan deviation d m ,  multiply the output x, of a normalized flicker 
FM generator b y d Z T 0 .  

All these flicker FM generators take roughly the same programming effort and running time. 

The FD and PPL generators give exact simulations of their nonstationary target models. 
Even on a finite interval, their outputs are affected by arbitrarily low Fourier frequencies. 
The DS generator output, though it is a stationary process, still behaves substantially like a 
nonstationary f - 3  process on a finite time interval. 

The DS, FD, and PPL generators behave more like a quartz oscillator than the IR generator 
does. Although the Allan deviation of both oscillators rises as T increases beyond 64 s, this 
rise is not enough to explain why the oscillator MSTIE points line up with the curves for DS, 
FD, PPL, and IR2 (the “second-half” modification of IR), but not with the IR1 curve. 

The IR generator is an inaccurate simulator of the FD(3/2) model; it has a “burn-in” problem, 
which causes it to have smaller long-term phase deviations on average than the model does. 
Fortunately, one can still get an accurate FD(3/2) simulation from IR by generating twice as 
many points as one needs and throwing out the first half. In this case, one has to use FFTs 
of size 4N to generate N points. One can also use an FFT size of 4N in the N-point DS 
generator to fill in more low frequencies. 
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0 The IR generator is deficient because it neglects the past of the FD(3/2) process; the same 
is true for the fractional integral models in [2]. The IR output (6) is just the first term of 
the right side of the FD(3/2) formula (2), whose other terms represent the effect of the entire 
past ( j  5 0) on the future value 2,. In fact, the IR output is exactly the error of the mean- 
square optimal linear predictor of xn on the past. If we could express the second sum in (2) 
in terms of xj, j 5 0, instead of uj, then we would have the predictor itself. Similarly, if a 
Barnes-Jarvis generator starts with a zero initial state, then its output is a prediction error, 
not the whole target process [9]. It is one thing to tie the present to zero, as we often do; it 
is another thing to neglect the past of these long-memory processes. 

0 Flatness of Allan variance is an inadequate way to judge a flicker FM generator; it gives 
scarcely any hint of the deficiency of the IR generator. 

0 Although these models and generators (except IR) seem to behave in the right way, they 
probably give little insight into how 1/ f noise arises in the world. It is as though we did not 
know that a process with a 1/f2 spectrum, which we could simulate approximately by the 
discrete spectrum algorithm with sk = fi’, is actually a random walk, the time integral of a 
sequence of independent random shocks. 
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Outline 

Motivation: Simulate flicker FM component of quartz oscillator 
noise 

Noise model 
Two software noise generators 

Old - approximate simulation of model 
New - exact simulation of model 

Oscillator data (Oscilloquartz 8607-MB vs H-maser) 
Comparison methods 

Allan deviation 
Mean square time interval error (MSTIE) 

Conclusions 
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Fractionally Differenced Processes 
1 

Process FD(6) has spectrum - 
1 

12 sin nf12' 

A FD(6) = FD(6-1) 
Stationary 

[ 
FD(-112) FD( 112) 

1 Target 1 
L I 

0 112 I 312 2 

12 sin nf (  ( 2 s i n ~ f ) ~  j2sinnfr 

-1 -112 

1 
\ white / rand. walk 

- 1 
Spectra: 12sinnfl 1 1 

C. Greenhall, PTTl 2002 3 



impulse Response (IR) Generator 
Kasdin and Walter, 1992 

Approximate simulation of FD(3/2) model 
Fractional integration filter of order 3/2: 

00 -312 A(z)=( l -2  -1 ) = C a n 2 - n  

n=O 
n 

n = 1,2 ,..., N ,  where u . is white noise. Let xn = C a n - j u j ,  J 
j=l  

Done in N log N time by FFT Qv = power of 2) 

1 J n 

C. Greenhall, PTTl 2002 4 



FD Generator 

Exact simulation of FD(312) model 

I. Let N = power of 2. 

2. Generate zo ,..., z N ,  N + 1 values of stationary FD(-1/2), 

by exact method of circulant embedding. 

3. Do two cumulative sums: 

j=l  j=l  

b o 7  Yo arbitrary) 

Then xo, ..., xN+2 is exact FD(3/2). 

C. Greenhall, PTTl 2002 5 



Circulant Embedding 
Exact method for simulating stationary Gaussian process 
with given autocovariance sequence 

I. Let N = power of 2. 

2. Start from desired ACV so , ..., s N  , where S, =  EX^,,^ 

3. Let F = [sO,sl, ..., s ~ , s ~ - ~ , . . . ,  s 1 ,  extended ACV 

5. If any & < 0 ,  the algorithm fails. 

6. Generate z0 , ..., Z2N-l from discrete spectrum So , ..., s2N-1 

4. Let 5 + FFT2, + 3 

N 

7. Use only zo,  ..., zN 

C. Greenhall, PTTl 2002 6 
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2-Point Time Interval Error (TIE) 
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Mean square TIE, MSTIE (z,zl) : 

Average TIE2 over ensemble or time to keeping z1 and z fixed. 
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Conclusions 

The FD generator gives an exact simulation of N points of 
the FD(312) flicker FM model. 

The IR generator has a "burn-in" problem: 

It has smaller long-term phase deviations on average 
than the model or a quartz oscillator. 

Second-half workaround: before generating N points, 
develop a past of length N. 

Flatness of Allan deviation is an inadequate criterion for 
judging flicker FM generators. 

Parallel to 1986 work on Barnes-Jarvis generators. 
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