
I
I

0

Q
)

c
)

m

m r

S

L

a

m 0

cn

> 0

U

v,
I

.- m
a= a
+

0

a,
.-c

I

m p

m
LL
23)
c

c

3

.- .
0

0

U

c

m cn
S

h

.- I.
.- .
S

a,
U

-

m X

W
 +

x

2 .
c

a,
L

I

S

E 3

x

L

S

S

- LL

Our Goals

Understand fault insertion process
Measure faults in evolving systems
Understand the relationship between faults
and structural code elements
Developing software fault models depends on
definition of what constitutes a fault

3

Measuring Faults

Desired characteristics of measurements,
measurement process
+ Repeatable, accurate count of faults
+ Measure at same level at which structural

4 Measure at module level (e.g., function,
measurements are taken

method)
+ Easily automated

4

Measurement of Structural
Evolution

Lkm'in Darwin Portal
.% II 4r \,.,?,,, , I n 11, 1 ,I

Graph of Code Churn and Code Delta for the project
ANONYMOUS

Navigation

DanvinMain

Manager
Information

Tester Information

Education

Prqect Manager

View Available
Databases

Feedback
e'

'../tap/churn8768,dat" using 1:2 +
' _ .,'t:~,ri/drlta87dB,dat" usin% 1:2 +

o d

l O / O l 01/01 04/01 07/01 iO/Ol 01/01 04/01 07/01

Click here for help

5

Structural Evolution at the Module
Level

y.lu mkpliolw ED L, s m w - w

(Non-zero) Modules for build 2002-04-02 of project ANONYMOUS, sorted by Churn since baseline. =
idJ89hndaaolm .J(%-MRwla

rTy- m u - EMU- W x ¶ h m~

4
chm F"

B"&e
3243 906078
3135 387632
3108478289
3025 6594%
3011455888
2981 802738
2848 905049
2838428107
2823 947415

~~

~- -~ ----
- -~ -~

806 102760
709 630505
691 654607
690 016578
670 521970
660459373
610 636144
609 995906
YO 089463
545 460083
415 293089

~~ ~~

~-

1- -
~

. ~

6

/

CompareRepairs \
to FaultyFiles /

Measurement Framework

Fault Regions

~~

Repaired File IDS I

Fault Identification
a n d h n t i n g

Rules

- I- u

Add fault
placement to

repository /
Find Initial Fault \ Initial Fault \

Occurence Placement / \ Identify Faults \ Discovered Faults \

V

/
hrbst recently

changed source
files

\ Emactchanged \
sourcefiles / CM Libraty

\

Add structural
measurements to

repositow

RawStNCtUral \ kasure most
\ recentlychanged \

sourcefiles / measurements /

/ \/ module name,
revision number,

structural measurements

I
\

module name,

kasurement
Baseline

revision number. I I

\ Compute fault \ \ hkasurement
/ ' module name,

index

/ I
module names,

revision numbers,
fault indices

/

fault count

\

module names,
revision numbers.

fault indices Compute
Pmpottional Fault

Burden
module name, revision number,

Compute

Burden fault index, fault count
Proportional Fault '

Fault
Measurement

and
Identification

Fault
Burden

Structural
Measurement

Develop fault

model
content regression \ 7 Regression \ Compute absdute \ Absolute Fault

coefficients / fault burden / Burden

No Existing Definition of Fault in
Measurable Terms

IEEE Standards
+ IEEE Std 729-1983, “IEEE Standard Glossary of

Software Engineering Terminology”
+ IEEE Std 982.1-1 988, “IEEE Standard Dictionary

of Measures to Produce Reliable Software”
+ IEEE Std 1044-1993, “IEEE Standard

Classification for Software Anomalies”
ODC
Previous work (Annual Oregon Workshop on
Software Metrics, May I 1-1 3, 1997)
Frankl, Hamlet, Littlewood, Stringini (IEEE TSE, vol.
24, no. 8, August 1998) 8

Approach

Examine changes made in response to
reported failures
Base recognitionlenumeration of software
faults on the grammar of the software
system’s language
+ Faults found in executable, non-executable

statements
Fault measurement granularity in terms of
tokens that have changed

9

Example 1

Original statement: a = b + c * d;
Intended statement: a = b + c / d ;
One token changed - rr*” = ,,/,’
+ Coding error

Count number of faults as 1

10

Example 2

Original statement: a = b + c * d;
Intended statement: a = b + (c * x) + sin(z);
Substantial difference between first and
second statements
+ Reflects design rather than coding problem
Fault measurement method should reflect the
degree of change

11

Identifying and Counting Faults
Each line of text in each module version is a bag of
tokens
+ If a change spans multiple lines of code, all lines

Number of faults based on bag differences between
version of program
+ Exhibiting failures
+ Modified in response to failures

Use version control system to distinguish between
changes due to
+ Repair
+ Functionality enhancements and other non-repair

for the change are included in the same bag

12
changes

Fault Identification
Example 1

Original statement: a = b + c;

Modified statement: a = b - c;
+ Bl ={<a> 7 <=> 7 7 <+> 7 <c>}

+ B2 ={<a> 7 <=> 7 7 <-> 7 <c>}
B, - B2 = {e+> 7 <-> }

One token has changed I fault

13

a,
S

0

+
+

A

A

a, v
)

I
-

*

0

V

a

V

1
-

II I

.

(3

c
)

I
A

h

i A
-

A
-

A
-

II
V

 II
V

 m V
 II

c-rz

m"

h

A

i

a,
L

L

=. t

I
-

*

0

II
m

a

0

0

0

c

.-
II

h

A

c
)

II
-

m"
Q

)
m

V

..
I

c

m
.

I

c

c

c

m-

I

A
h

ll
V

E

I
E

-

m
i
a,
v
)
a,
Q

L

a,
c\J
u
,

I

I

a,
m
I

1

A
-
m
V

++

h

v,
II

m"
a,
5

,

123
m

II
I

-
 3

c

U

0

m-
II

m"
I

m
I
I

m"
m"

Fault Identification
Example 3

Original statement: a = b - c;

Modified statement: a = 1 + c - b;
={<a> 7 <=> 7 <c> 7 <-> 7 } + B3

+ B4 = {<a> 7 <=> 7 <I> 7 <+> 7 <c> 7 <-> 7 }
B3 - B, = {<I> 7 e+>}

2 new tokens representing 2 faults

15

Current Work

Current Work
+ Application to JPL software development

effort
Research
Production

+ Develop better models relating
Structural measurements of software
evolution during development
Number and types of faults inserted

16

Current Work (cont’d)
Faults YS. Cumulative Churn By Module

gmoothed Fault Counts Used, Last 2 Observations Removed
y = 0.1574x+ 1.1:

RZ = 0.7735

0 200 400 600 800 1000 1200 1400
Cumulative Chum per Module - Excludes Initial Version FI Value

Fault Model Example
17

Current Work (cont’d)

Identifying fault insertion points
+ Increase resolution, accuracy of fault

models
+ Determine empirical distribution of number

+ Supported by CM tool currently used in
of faults inserted per unit change

repository, CVS

18

Current Work (cont'd
1.28 (jini 21-Mar-01): int watcher_parse-wrench-options (char ' args)
1.28 (jim 21-Mar-01): {
1.28 (jini 21-Mar-01): RListOfRBuf options:
1.28 (jim 21-Mar-01): RListOfRBufEntry * option-entry: i t An entry in the list of options. 'i
1.31 (matt 04-May-01): RListOfRBuf * option-parts: I* Option entry broken into name and value. *i
1.28 (jim 21-Mar-01): RListOfRBufEntry * option-name: I* The Name of the current option. 'I
1.28 (jim 21-Mar-01:): RListOfRBufEntry * option-Val: i' The Value (if applicable) of the
1.3 1 (matt 04-bJay-0 1) :
1.28 ijim 21-Mar-01): ENode ' command-line; !* Node containing command line options. '!
1.31 (matt 04-May-01): int well-formed = TRUE: .P Is this set of options well-fomied? *!
1.3 1 (matt 04-May-0 1) :
1.28 (jini 21-Mar-01):
1.35 (coy 23-Jan-02): options = rstt-split (args. ":". 0):
1.28 (jim 2 1-Mar-01): command-line = watcher-config-get-command-line (1:
1.28 (jini 21-Mar-01):
1.28 (jim 21-Mar-01): RLIST-FOREACH (options, option-entry)
1.28 (jim 21-Mar-01): {
1.35 (cory 23-Jan-02):
1.28 (jim 21-Mar-01'):
1.28 (jim 21-Mar-01):
1.28 (jim 21-Mar-Ol):
1.31 (matt 04-May-01):
1.29 (jim 23-Mar-01):
1.28 (jim 21-Mar-01): {
1.28 (jim 21-Mar-01):
1.31 (matt 04-May-01):
1.29 (jim 23-Mar-01 1:
1.28 {jim 21-Mar-01):
1.28 (jim 21-Mar-01): }
1.29 (jini 23-Mar-01):
1.28 (jim 21-Mar-01): {
1.28 (jim 21-Mar-01):
1.31 (matt 04-May-01):
1.31 (mall 04-May-01):
1.28 (jim 21-Mar-01):
1.28 (jim 21-Mar-Olj: {
1.29 (jim 23-Mar-0 1):
1.31 (matt Oil-May-01):
1.28 (jim 21-Mar-01): break:
1.28 (jim 21-Mar-Olj: }
1.29 (jim 23-Mar-01 j:
1.28 (jim 21-Mar-01): }

1' The separated options. *:

' current option. *;

option-parts = rbu-split (option-entry->buf, "=", 1);
option-name = rlist-nth (,option-parts. 0):
option-val = rlist-nth (option-parts. 1):

if (rbuf-equal-str (option-name-zbuf. "allow-nodrivers"))

i' Wrench will want to be able to start watcher up before any

enode-attrib-str (command-line. "allow-nodrivers". "true"):
printf ("" Will allow starting without drivers..h"):

else if (hu-equal-str joption-name->buf. "only-transport"))

/'Wrench wants to start watcher with only the specified transport

if (NULL == option-Val!

' drivers are installed. *i

* (ie. most likely a unix socket or something, to send it commands
'without trying to connect to any GUls) ' 1

printf ("only-transport requires a value.\n"):
well-formed = FALSE:

enode-attrib (command-line. "only-transport". option-val->buf):

CVS Annotation Example 19

Measurement Noise

Not all changes associated with a PR may
actually be repairs
“Pocket PRs”
+ Not an issue for this development effort

because of how CM is set up
+ May be issue for other efforts
Unequal test coverage - some components
may be more heavily tested, finding more
faults

20

Determination of Fault Insertion
Point

Line deletion, modification - relatively
straightforward insertion point identification
+ CVS “annotate” command to find first

version in which faulty line was inserted.
Line addition - more difficult to determine
fault insertion point
+ Approximation - identify insertion points of

lines on either side of new line.

21

Inaccurate Fault Counting in Some
Situations

+ Example I - adding operators/operands
Original faulty statement: a = b + c;

+ Repaired statement: a = b - c + d;
Bag difference: {e->, <d>}
3 tokens added or changed, however

+ Example 2 - token reordering
Original faulty statement: a = b - c;

P Repaired statement: a = c - b;
1 - Bag difference: {}
+ Number of reordered tokens cannot be

accurately determined
22

a,
m

m
x

CCT
a,

m E

t

C
I

0

0

CCI
m

 a,
t

0

I
I

Summary

Developed a starting point for measuring faults
+ Repeatable, consistent measurement
+ Faults measured at same level at which structural

measurements are taken, Le., function and
method level

+ Easily automated
+ Transparent to developers

No additional activities for developers
No footprint in development environment

24

Future Work

More accurate counts of number of tokens
that have changed, reordered
Extend fault type categories
Extend technique to other software artifacts

25

