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Abstract - While past flight projects involved flying single 
spacecraft in isolation, over forty proposed future missions 
involve multiple coordinated spacecraft. This paper presents 
an approach to onboard anomaly diagnosis that combines 
the simplicity and real-time guarantee of a rule-based 
diagnosis system with the specification ease and coverage 
guarantees of a model-based diagnosis system. This system 
also provides a clear path to distributing the diagnosis 
process across a number of processors on one or more 
spacecraft. 
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1. INTRODUCTION 

The past decade has seen missions with growing numbers of 
probes. Pathfinder has its rover (Sojourner), Cassini has its 
Huygens lander, and Cluster I1 has 4 spacecraft for multi- 
point magnetosphere plasma measurements. This trend is 
expected to continue to ever-larger fleets with increasingly 
difficult coordination requirements. For example, a 
proposal for a Terrestrial Planet Finder (TPF) mission 
involves an interferometer with 5 spacecraft flying in a 
precise formation in order to detect earth-sized planets 
orbiting other stars. Another proposal for a laser 
interferometer space antenna (LISA) mission involves 3 
spacecraft flying in a precise formation to measure low 
frequency gravitational radiation. 

As spacecraft progressively become more complex to satisfy 
increasingly more ambitious mission requirements, hand 
coding robust rule-based diagnosis software becomes 
progressively more arduous and prone to error. To battle 
this problem, the autonomy community has focused on 
developing model-based Mode Identification and 
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Reconfiguration executives that control systems to satisfy 
commanded states. In fact, such technology is already 
available for spacecraft. Recently, a model-based diagnostic 
engine called Livingstone [Williams&Nayak 19961 was 
successfully flown and tested on NASA’s Deep Space 1 
mission. 

Model-based systems do not require manually enumerating 
rules and thus no complex verification of rule interactions is 
necessary. Instead, engineers specify the behaviors of 
simple components and how components are connected to 
each other to form the spacecraft. Unfortunately, current 
systems like Livingstone cannot provide hard real-time 
performance guarantees. Also, such systems tend to compile 
their models into rules in a truth maintenance system, which 
does not easily lend itself to distribution. There has been 
work on distributed truth maintenance, but the resulting 
systems are fairly complicated resulting in a reluctance to fly 
them on both single and multiple spacecraft missions. 

In this paper, we introduce Distributed Real-time Model- 
based Diagnosis (DRMD). DRMD combines the benefits of 
the model-based systems with the hard real-time guarantee 
of rule-based systems. DRMD, as the name suggests, offers 
a distributed diagnosis capability suitable for such space 
missions as the TPF “Free Flyer” in which the system must 
be diagnosed across physically separated spacecraft. 

While our approach towards modeling a system was inspired 
by Livingstone [Williams&Nayak 19961, our approach 
towards diagnosis is based on knowledge compilation 
[Darwiche 1998a,b]. Livingstone’s modeling language, 
called the Model-based Programming Language (MPL), 
offers the expressiveness necessary to specify a model of a 
system for both diagnosis and reconfiguration. Models 
written in MPL are both modular and reusable. Most 
importantly, MPL provides the means for engineers to 
specify a model of a system in terms of the behaviors of its 
components without having to reason about how all of those 
behaviors interact. [Darwiche 1998b] describes a model 
compilation technique that takes advantage of offline 
computational resources, shifting as much of the 
computation required for diagnosis offline. This technique 
minimizes the amount of online computational necessary for 
diagnosis, and further more, it provides a hard real-time 
guarantee for diagnosis. To combine the aforementioned 
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benefits, we merge the use of the expressive MPL modeling 
language with the model compilation and diagnosis 
techniques of [Darwiche 1998a,b]. Finally we extend the 
diagnosis approach described in [Darwiche 1998bl to 
provide a distributed diagnosis capability. The result is 
Distributed Real-time Model-based Diagnosis. 

The remainder of this paper presents our DRMD system. 
The next two sections, sections 2 and 3, respectively define 
our modeling language and describe the knowledge- 
compilation approach to diagnosis. Section 4 subsequently 
explains how to distribute the online diagnosis process 
across multiple spacecraft, and section 5 discusses some 
empirical results based on experiments with a model of the 
formation interferometer testbed. Finally, we conclude with 
some remarks on future research. 

2. MODELING 

DRMD’s modeling language is called the Connection Model 
Programming Language (CMPL). CMPL is a simplified yet 
equally expressive variant of Livingstone’s MPL. CMPL 
models a device as a connected set of components, where 
each component operates in one of a number of modes. 
Essentially each mode defines the relationships between a 
component’s inputs and its outputs. More precisely CMPL 
has five constructs to define: types of connections, abstract 
relations, components with modes and relations between 
inputs and outputs, modules to define multiple component 
subsystems, and the top level system being diagnosed. To 
define the syntax of our language we use the following 
conventions, where syntax definitions appear in Aria1 font. 

0 A word in italic denotes a parameter, like value. 
Ellipsis denotes repetition, like value.. . 

0 Square brackets denote optional contents, like [value]. 
0 A vertical bar choice between options, like false I true. 

Connection types 

The most fundamental object defined in a model is a 
connection type. As in most programming languages, all 
types must be defined before they can be used. Just like 
Livingstone, types are enumerated, and CMPL defines types 
in terms of finite sets of values. The syntax for type 
declarations is as follows, where ctype is the type’s name and 
value ... is the finite set of values. 

(defvalues ctype ( value ... )) 

For example, the following defines the domain named 
“boolean” that ranges over “false” and “true”: 

(defvalues boolean (false true)). 

Relations 

Once connections are typed, defining relationships among 
connections becomes a matter of building Boolean equations 
over connection assignments. For instance, the following 

equation requires that two Boolean connections, A and B, 
have the same value. 

(:or (:and ( =  A true) ( =  B true)) 
(:and ( =  A false) ( =  B false))) 

In general, relationships are defined by well formed 
formulas using the following syntactic rules, where wff  is a 
well formed formula, cname is a connection name, and value 

is a connection value. 
wff+ (:not wff~ I (:and wff... ) I (:or wff... ) I (= cname value) I 

(== cname cname) I (rname arg ... ) I false I true 

arg 4 wff I cname I value 

While the Boolean functions have their standard semantics, 
the two equalities respectively require that a connection has 
a particular value and that two connections with the same 
type have the same value. Finally, mame denotes a user- 
defined relationship. Such a definition has the following 
form, where the parameters appear in wff and are replaced by 
the arguments in well-formed formulas where mame is used. 

(defrelation rname ( parameter.. . ) wff~ 

For instance, the following defines a widely used implication 
relationship. 

(defrelation :implies (wffa wffb) 
(:or (:not wffa) wffb)) 

We finish our definition of relations with a two semantic 
restrictions. First, any particular wff can only reference 
previously defined relations to keep users from defining 
recursive relations that cannot be evaluated. Second, the 
arguments associated with parameters in a defrelation are 
constrained by where the parameters appear in the wff. 
Thus a user cannot mistakenly expand a relation to get 
structures like (:not cname) or (= wff value). 

Components 

Components model primitive device types and are specified 
as finite state machines where each state relates component 
inputs to outputs in a different way. The syntax for a 
component type declaration is as follows, where stype is the 
name of the component type, ctype defines the type of 
connection cname, and mname denotes a component state. 

(defcomponent stype 
[:inputs ( (ctype cname) ... )] 
:outputs ( (ctype cname) ... ) 
:modes ( (mname [:cost in4 [:model wn] 

[:transitions ((mname wff[:cost ind) ... )]) ... )) 
Each component state, or “mode” using Livinstone’s 
vocabulary, has three attributes: an integer cost that 
intuitively corresponds to the likelihood of the component 
being in that mode; a wff model relating inputs and outputs 
when the component is in the mode; and a set of transitions 
denoting how to a component evolves to the next mode. 
Each transition has a target mode, a wff precondition for 
evolving to the target, and an integer cost of the transition. 
In general, costs vary from 0 to 10000 reflect a mode or 
transition’s likelihood, where a high cost denotes a low 
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likelihood. Since most modes will be nominal, they will 
have an inherently zeroed cost - leading to a default of zero 
if the cost attribute is omitted. 

For instance, consider the following simple example of an 
and-gate. Given the nominal “ok” mode’s model, this gate 
definition makes the output reflect a conjunct of the inputs. 
While the gate only has one explicitly modeled mode, there 
is an implicit unknown mode that all gates have. The 
unknown mode costs 10000 and has a model that leaves the 
inputs and outputs completely unrelated. In general, the 
goal of diagnosis is to find the component modes with the 
least cost and models that agree with observations.’ 

(defcomponent and-gate 
:inputs ((boolean il) (boolean i2)) 
:outputs ((boolean 0 ) )  

:modes ((ok :model 
( :and ( : implies 

(:and ( =  il true) 

( =  o true)) 

(:not (:and ( =  il true) 

( =  i2 true)) 

( :implies 

( =  i2 true))) 
( =  o false)))))) 

Modules 

A module is a specification of a network of components 
and/or other sub-modules. Its main purpose is to improve the 
readability and the simplicity of a model. The syntax for a 
module specification is as follows, where stype is the module 
type’s name, ctype and cname denote typed connections, and 
sname denotes a named subsystem of the module. 

(defmodule stype 
[:inputs ( (ctype cname) ... )] 
:outputs ( (cfype cname) ... ) 
:connections ( (ctype cname) ... ) 
:structure ((stypesname( [cname . . . I )  ( cname ... )) ... )) 

While inputs and outputs denote interfaces to a module, 
connections reflect internal signals between subsystems. A 
structure entry defines the subsystem network as a set of 
subsystems with each subsystem’s inputs and outputs. 
For example, consider the following definition of a three 
input and-gate, where the structure has typed components as 
defined in the previous example. 

(defmodule and3i 
:inputs ((boolean il) (boolean i2) (boolean i3)) 
:outputs ((boolean out)) 
:connections ((boolean wire)) 
:structure ((and-gate a1 (il i2) (wire)) 

(and-gate a2 (i3 wire) (out)))) 

We finish our definition of modules with two semantic 
restrictions within a structure entry. First, a module 
definition can only refer to previously defined module types 
- making recursive definitions illegal. Second, the output of 
a subsystem cannot directly or indirectly feed back into one 
of its inputs - to keep a designer from representing feedback 
loops that can cause continual mode switching. 

Systems 

A system is a specification of a network of components and 
modules. Unlike Livingstone, CMPL is extended to enable 
the modeling of distributed systems. In CMPL, each 
distributed element in the system is defined as a subsystem. 
Each subsystem is associated with a list of commands and 
observables that are local to that subsystem. The idea is that 
the location of the physical device is not important. For 
distributed diagnosis, and also for distributed commanding, 
the physical location of the devices’ sensors and the physical 
location at which the commands are generated are what is 
important. The syntax for a system specification is as 
follows, where the connections and structure fields mirror 
the same fields in a module definition. 

(defsystem name 
[:subsystems ( (name ( [cname ... ] ) ( [cname ... ] )) ... )I 
:connections ( (cfype cname) ... ) 
:structure ( (sfype sname ( [cname ...I ) ( cname... )) ... )) 

For instance, the following example defines a simple test 
system for our previously defined and3i gate. For 
simplicity, this example only has one subsystem and one 
gate. All of the top-level Boolean connections are sensed, 
and there are no commands feeding into the subsystem. 

(defsystem tstl 
:subsystems 

:connections ((boolean a) (boolean b) 

:structure ((and3i gate (a b c)(o)))) 

((sub nil (a b c 0 ) ) )  

(boolean c) (boolean 0 ) )  

3. MODEL COMPILATION 

While CMPL was strongly influenced by the Livingstone 
system, our approach to diagnosis is based on knowledge 
compilation [Darwiche 1998a,b]. As such, model 
compilation based diagnosis is a three step process: (1) 
expand the system in to a network of processed components 
at compile time; (2) compute the Boolean equation at 
compile time; and (3) iteratively evaluate the equation at run 
time. 

Figure 1 - Graphical representation of and3 i module 

* While our examples deal with static mode costs, these costs dynamically 
change when folding in transition costs from the currently perceived state. 
See discussion of future work in the conclusion for more on this. 

Expanding the network 

Expanding the network is a simple matter of taking a 
defsystem and using defmodules to expand named module 
elements within the structure list until only components 
remain. For instance the t s t 1 system mentioned above has 
a single module element that expands into the following two 
components. 



((and-gate gate*al (a b) (gate*wire)) 
(and-gate gate*a2 (c gate*wire) (0))) 

As this example implies, name substitution occurs during the 
expansion. Inputs and outputs are replaced by actual 
parameter names - il, i2, i3, and out respectively 
became a, b, c, and 0. Subsystem names within a module 
are prefixed by the module's name to assure unique 
component names - a1 and a2 respectively became 
gate*al and gate*a2. Similarly, connection names are 
also prefixed resulting in the gate*wire. 

Once the components are determined, their mode definitions 
are converted into a Boolean expression in conjunctive 
normal form (CNF). Converting mode definitions into a 
Boolean expression involves building an equation with the 
following form, where sname is the components name, and 
each disjunctive entry is for a different mode mname defined 
in terms of model wff. 

( :and ( :or ( :not (=  mode*sname " m e )  ) wff)... ) 

For example, the equation for the gate*al is the 
following. 

(:and (:or (:not ( =  mode*gate*al ok)) 
(:and (:implies 

(:and ( =  a true) ( =  b true)) 
(=  gate*wire true)) 

(:not (:and ( =  a true) 

( =  gate*wire false)))) 

( :implies 

( =  b true))) 

(:or (:not ( =  mode*gate*al unknown)) 
true) ) 

Each component's Boolean equation is subsequently 
expanded with the defrelations, converted into CNF, and 
then each ( :not (=  c V) ) in a disjunct gets replaced with 
the set of entries { ( =  c vl) ...} , where vi varies through the 
legal values of c not equal to v. Thus the above equation 
expands into. 

( :and 
(:or ( =  mode*gate*al unknown) 

(:or ( =  mode*gate*al unknown) 

(:or ( =  mode*gate*al unknown) 

( =  a false) ( =  b false) (= gate*wire true) I 

( =  a true) ( =  gate*wire false)) 

( =  b true) ( =  gate*wire false))) 

Network expansion ends with all components instantiated 
with their CNF equations. While this is the internal form 
used for diagnosis in Livingstone [Nayak&Williamsl997], 
we have an extra step to improve runtime performance. 

Building the equation 

Building the equation out of a network of CNF components 
is a complex process that has been previously defined in 
detail [Darwichel998a]. Unfortunately our networks violate 
a restriction made by previous compilation work that limits 
components to only have one output. We circumvent this 
limitation by replacing multiple-output components with 
multiple single-output components. There are multiple ways 
to do this, and our current approach can be illustrated in 
Figure 2. 

Figure 2 - Graphical representation of a multiple output 
gates replacement structure 

In this approach each Oi corresponds with an output, and M 
corresponds to the original component's mode. Each of 
these new components has its own CNF formula, which is 
computed by partitioning the original component's disjuncts 
and then adding a few overhead disjuncts. The partition 
simply assigns disjuncts that mention no outputs to M and 
disjuncts to Oi if they refer to Oi's output but no output for 
Oj with j > i. Given the disjuncts assigned to the gates, 
the inputs to each gate are determined by which variables 
that gate's disjuncts contain. 

Unfortunately two gates cannot refer to the same 
unobservable mode, which is the primary reason for the M 
gate. This gate also contains an overhead disjunct of the 
following form for each of the original component's modes 
mnamei, where mnamej entries are for modes other than 
mnamei. 

(:or ( =  M-output*sname mnamei) 
( = mode *sname " m e j  ) ... j 

This collection of disjuncts force M-output *sname, 
which is M's output, to be equal to mode*sname, and the 
Oi gates have the mode variable replaced with M's output to 
avoid sharing an unobservable mode assignment that is not 
reflected in the network arcs. 

Run time evaluation 

After taking care of multiple output gates Darwiche's 
algorithm can process the component network to generate a 
diagnosis equation for onboard evaluation. For instance, the 
equation generated for our simple tstl example is the 
following. 

(:or (:and (:or (:and (=  a true) ( =  b true)) 

(:or (:and ( =  c true) (=  o true)) 
( =  mode*gate*al unknown)) 

(:and ( =  c false) ( =  o false)) 
(=  mode*gate*a2 unknown))) 

( =  mode*gate*al unknown)) 

( =  mode*gate*a2 unknown)))) 

(:and (:or ( =  a false) ( =  b false) 

(:or ( =  o false) 

At first inspection this equation looks like any other Boolean 
equation, but it has several properties that simplify finding 
the cheapest assignment to mode variables satisfying the 
equation given current observations. First, the expression is 
an and-or graph formally called negation normal form 
("F). Second, note that the variables mentioned in each 
sub-expression of an :and expression do not appear in 
sibling sub-expressions. This form is formally called 
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decomposable negation normal form (DNhF) [Darwiche 
20011 and facilitates finding minimal cost diagnoses in time 
linear in the equation size. 

With a DNNF equation, finding the minimal diagnoses is a 
matter of determining the minimum possible satisfaction 
cost of each sub-expression and then identifying the sources 
of the top level expression’s cost. For instance, suppose that 
our t s t 1 example outputted a true value when a, b, and c 
are respectively true, true, and false. As illustrated 
in Figure 3, the algorithm starts by costing the leaf nodes, 
where mode nodes get mode costs and sensed nodes get 
either zero or infinite costs depending on observations. In 
this case the checked nodes get zero costs. Once leaf costs 
are known each and/or node cost is the sudmin of its child 
nodes’ costs. In the example, these costs appear above the 
nodes. Once the root node’s cost is known, diagnosis goes 
back down the structure pruning nodes that do not contribute 
to the cost to determine what mode assignments can 
contribute to the cost. In this case the mode assignment is 
that component gate*a2 is broken. 

.I ( =  a true) 
4 ( =  b true) 

( =  mode*gate*al unknown) 
( =  c true) 

.I ( =  o true) 
4 ( =  c false) 

( =  o false) 

>- a:d \, 

(= mode*gate*a2 unknown) / 
( =  a false) 

I 

( =  ( =  mode*gate*al b false) -:>s: unknown) 

( =  o false) 10000 
or 

(=  mode*gate*a2 unknown) 

Figure 3 - diagnosing example t s t 1 system when c is 
false and all other inputs/outputs are true 

The reason for the linear performance is that the cost of an 
and node can be determined by just looking at its children’s 
costs. If the leaves of any and node’s sub-expressions 
shared common variables, then the sources of costs would 
not be independent and the sum would be an over estimate 
of the actual and node’s cost. Computing the actual cost 
would then become a lot more complex, and require time 
that was exponential in the sum of the sub-expressions’ 
sizes. This is the ultimate motivation for computing DNhF 
Boolean expressions. 

4. DISTRIBUTED SYSTEM DIAGNOSIS 

Not only does the use of DNNF Boolean expressions 
facilitate real-time diagnosis, but it also facilitates 
distribution across multiple subsystems, like spacecraft. A 
CMPL system definition includes a specification of how the 
system is distributed into subsystems. Each subsystem 

specification defines the set of observables and commands 
that are local to each subsystem. We use this information to 
distribute the expression. We will use the following system 
example to explain the distribution method. This example 
differs from tstl in two ways. It has two and3i modules 
and it partitions the sensed values across tree subsystems. 

(defsystem tst2 
:subsystems 

((sl 0 (a b)) 
(s2 0 (d e f P)) 
(s3 0 (c 0 ) ) )  

:connections ((boolean a) (boolean b) 
(boolean c) (boolean 0 )  

(boolean d) (boolean e) 
(boolean f) (boolean p)  

(and3i gate2 (d e f) (p )  ) ) 
:structure ((and31 gate1 (a b c) ( 0 ) )  

For this example the tree and its partitioning across the three 
subsystems appears in Figure 4. Deriving the partitioning 
starts with attributing a number to each subsystem denoting 
its location in the subsystems list. Given these numbers, we 
associate each observable leaf with the subsystem that 
observes it. For instance ( = a true ) is associated with a 
1, which is subsystem Sl’s position. When the children of 
an and/or node are either unobservable or have an assigned 
number, the and/or node is assigned the maximum of the 
numbers assigned to its children. This process continues 
until each and/or node has an assigned number, and these 
numbers tell which subsystem is responsible for each node 
during diagnosis. 

( =  a true) 
( =  b true) 
( =  mode*gatel*al 
( =  c true) 
( =  o true) 
( =  c false) 
( =  o false) 
( =  mode*gatel*a2 unknown) / 

( =  f true) >and 
( =  p true) 

( =  f false) \and )Or 
( =  p false) 
( =  mode*gate2*a2 unknown) 
(=  d false) 
(=  e false) 
( =  mode*gate2*al unknown) 
( =  p false) 
( =  mode*gate2*a2 unknown)/ 

Figure 4 - partitioning the graph for t s t 2 system across 
three subystems 
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In addition to illustrating an example distribution, Figure 4 
shows an important property of the distribution in general. 
When two top-level modules can be diagnosed in isolation, 
their corresponding diagnosing sub-expressions are branches 
off of a top-level and node. Thus examples like subsystem 
S2’s being able to diagnose an entire substructure is a 
common occurrence, and this leads to the communications 
between subsystems for diagnosis being a function of 
subsystem interaction complexity instead of total system 
complexity. 

5. INTERFEROMETER EXPERIMENT 

In addition to testing DRMD on various circuit examples, 
we experimented with a Space Interferometer Mission Test 
Bed 3 (STB-3) model [Ingham et al. 20001 as well as the 
Formation Interferometer Test Bed (FIT) model, which is an 
extension on the STB-3 model. While STB-3 represents a 
single spacecraft interferometer, FIT represents a separated 
spacecraft interferometer. As illustrated in Figure 5, FIT is 
composed of combiner (right) and collector (left) spacecraft. 
The collector spacecraft precisely points at a star and 
reflects the starlight beam to the combiner spacecraft. While 
the combiner spacecraft also points at the star to collect the 
starlight, it also precisely points at the collector spacecraft in 
order to combine the starlight from the collector spacecraft 
with its own. This type of interferometer requires 
collaborative work between the two spacecraft, and due to 
the interdependencies between the two spacecraft, we must 
diagnose the system collectively. Thus, DRMD is well 
suited for such a system. 

The FIT model has 17 components and 64 finite domain 
variables, where 12 variables are observable. The graph that 
represents the compiled FIT model consists of 43 18 nodes. 
When distributed, the graph has 33 arcs that cross between 

Figure 5 - Simplified schematic of the Formation 
Interferometer Testbed (FIT). The left side of the dotted 
line represents the collector spacecraft and the right side 
of the dotted line represents the combiner spacecraft. 

spacecraft. With DRMD running on Allegro Lisp under 
Pentium 111-M 750 MHz, generating the most-likely 
diagnoses from an observation takes between 80 and 500 
msec depending on the observation. As all test scenarios 
verified, the number of messages passed between the 
combiner and collector spacecraft was linear in the number 
of cross spacecraft arcs. We also tested DRMD on a subset 
of the FIT model that represents the angular metrology of 
FIT. Angular metrology is responsible for properly aligning 
the two spacecraft, and the angular metrology model is 
composed of 4 components and 12 variables of which 3 are 
observable. When distributed, the angular metrology graph 
had 45 cross-spacecraft arcs. Running various diagnosis 
scenarios on the angular metrology system also showed that 
the number of messages passed between the two spacecraft 
was linear in the number of cross arcs. This result verifies 
that the number of communication among subsystems is a 
function of subsystem interaction complexity, not the total 
system complexity. 

6. CONCLUSION 

This paper presented a knowledge-compilation based 
approach toward implementing an onboard model-based 
diagnosis system that both runs in real-time and easily 
distributes across a number of processors on one or more 
spacecraft. Past model-based diagnosis systems, like 
Livingstone, search for the most likely mode by testing a 
number of modes against an internal model representation. 
Our approach further processes this internal representation 
to determine a form that can be evaluated in linear time to 
find the most likely mode with an extremely simple 
algorithm. 

While our work is based on the knowledge compilation 
work of Darwiche et al., there has been other work on 
offline compilation of Livingstone models on a system 
called Mini-ME [Chung et al. 20011. In this work, a model 
is compiled into a mapping from conjuncts of sensed values 
to disjuncts of mode estimates. This mapping is then used 
on line to compute disjunctive sets of mode estimates from 
observations, and these sets are processed to compute the 
actual mode estimate that optimally satisfies all disjunctive 
sets. This approach is very different from the one presented 
here. It may be faster on certain cases where the number of 
computed disjunctive sets is small, but the optimal 
satisfaction of a number of disjunctive sets is an NP- 
complete problem requiring a heuristic algorithm to avoid 
exponential performance as much as possible. Also, this 
approach focuses on the single spacecraft case. 

Finally, our current implementation only uses mode costs to 
estimate modes given a set of observed variables, and 
transitions are ignored. This results in a system that ignores 
previous mode estimations when computing a new estimate. 
As future work we plan to adapt a belief update approach, 
like that used in a Kalman filter, to folding the last estimate 
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into computing the next one. In this way, transitions and 
current mode estimations combine to provide a priori mode 
costs of the next modes to facilitate determining the next 
mode estimations from observations. 
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