
Distributed Real-time Model-based Diagnosis
Seung H. Chung

Artificial Intelligence & Space Systems Laboratories
Massachusetts Institute of Technology

70 Massachusetts Ave. 37-346
Cambridge, CA 02 139

chung @mit.edu
617-253-8364

Abstract - While past flight projects involved flying single
spacecraft in isolation, over forty proposed future missions
involve multiple coordinated spacecraft. This paper presents
an approach to onboard anomaly diagnosis that combines
the simplicity and real-time guarantee of a rule-based
diagnosis system with the specification ease and coverage
guarantees of a model-based diagnosis system. This system
also provides a clear path to distributing the diagnosis
process across a number of processors on one or more
spacecraft.

TABLE OF CONTENTS
1. INTRODUCTION .. 1
2. MODELING .. 2
3. MODEL COMPILATION 3

5. INTERFEROMETER EXPERIMENT 6
6. CONCLUSION ... 6
ACKNOWLEDGEMENTS .. 7
REFERENCES ... 7

4. DISTRIBUTED SYSTEM DIAGNOSIS 5

1. INTRODUCTION

The past decade has seen missions with growing numbers of
probes. Pathfinder has its rover (Sojourner), Cassini has its
Huygens lander, and Cluster I1 has 4 spacecraft for multi-
point magnetosphere plasma measurements. This trend is
expected to continue to ever-larger fleets with increasingly
difficult coordination requirements. For example, a
proposal for a Terrestrial Planet Finder (TPF) mission
involves an interferometer with 5 spacecraft flying in a
precise formation in order to detect earth-sized planets
orbiting other stars. Another proposal for a laser
interferometer space antenna (LISA) mission involves 3
spacecraft flying in a precise formation to measure low
frequency gravitational radiation.

As spacecraft progressively become more complex to satisfy
increasingly more ambitious mission requirements, hand
coding robust rule-based diagnosis software becomes
progressively more arduous and prone to error. To battle
this problem, the autonomy community has focused on
developing model-based Mode Identification and

’ 0-7803-7651-X/03/$17.00 0 2003 IEEE
IEEEAC paper #1116

Anthony Barrett
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive, M / S 126-347

Pasadena, CA 9 1 109

anthony.barrett @jpl.nasa.gov
818-393-5372

Reconfiguration executives that control systems to satisfy
commanded states. In fact, such technology is already
available for spacecraft. Recently, a model-based diagnostic
engine called Livingstone [Williams&Nayak 19961 was
successfully flown and tested on NASA’s Deep Space 1
mission.

Model-based systems do not require manually enumerating
rules and thus no complex verification of rule interactions is
necessary. Instead, engineers specify the behaviors of
simple components and how components are connected to
each other to form the spacecraft. Unfortunately, current
systems like Livingstone cannot provide hard real-time
performance guarantees. Also, such systems tend to compile
their models into rules in a truth maintenance system, which
does not easily lend itself to distribution. There has been
work on distributed truth maintenance, but the resulting
systems are fairly complicated resulting in a reluctance to fly
them on both single and multiple spacecraft missions.

In this paper, we introduce Distributed Real-time Model-
based Diagnosis (DRMD). DRMD combines the benefits of
the model-based systems with the hard real-time guarantee
of rule-based systems. DRMD, as the name suggests, offers
a distributed diagnosis capability suitable for such space
missions as the TPF “Free Flyer” in which the system must
be diagnosed across physically separated spacecraft.

While our approach towards modeling a system was inspired
by Livingstone [Williams&Nayak 19961, our approach
towards diagnosis is based on knowledge compilation
[Darwiche 1998a,b]. Livingstone’s modeling language,
called the Model-based Programming Language (MPL),
offers the expressiveness necessary to specify a model of a
system for both diagnosis and reconfiguration. Models
written in MPL are both modular and reusable. Most
importantly, MPL provides the means for engineers to
specify a model of a system in terms of the behaviors of its
components without having to reason about how all of those
behaviors interact. [Darwiche 1998b] describes a model
compilation technique that takes advantage of offline
computational resources, shifting as much of the
computation required for diagnosis offline. This technique
minimizes the amount of online computational necessary for
diagnosis, and further more, it provides a hard real-time
guarantee for diagnosis. To combine the aforementioned

I

mailto:mit.edu
mailto:jpl.nasa.gov

benefits, we merge the use of the expressive MPL modeling
language with the model compilation and diagnosis
techniques of [Darwiche 1998a,b]. Finally we extend the
diagnosis approach described in [Darwiche 1998bl to
provide a distributed diagnosis capability. The result is
Distributed Real-time Model-based Diagnosis.

The remainder of this paper presents our DRMD system.
The next two sections, sections 2 and 3, respectively define
our modeling language and describe the knowledge-
compilation approach to diagnosis. Section 4 subsequently
explains how to distribute the online diagnosis process
across multiple spacecraft, and section 5 discusses some
empirical results based on experiments with a model of the
formation interferometer testbed. Finally, we conclude with
some remarks on future research.

2. MODELING

DRMD’s modeling language is called the Connection Model
Programming Language (CMPL). CMPL is a simplified yet
equally expressive variant of Livingstone’s MPL. CMPL
models a device as a connected set of components, where
each component operates in one of a number of modes.
Essentially each mode defines the relationships between a
component’s inputs and its outputs. More precisely CMPL
has five constructs to define: types of connections, abstract
relations, components with modes and relations between
inputs and outputs, modules to define multiple component
subsystems, and the top level system being diagnosed. To
define the syntax of our language we use the following
conventions, where syntax definitions appear in Aria1 font.

0 A word in italic denotes a parameter, like value.
Ellipsis denotes repetition, like value.. .

0 Square brackets denote optional contents, like [value].
0 A vertical bar choice between options, like false I true.

Connection types

The most fundamental object defined in a model is a
connection type. As in most programming languages, all
types must be defined before they can be used. Just like
Livingstone, types are enumerated, and CMPL defines types
in terms of finite sets of values. The syntax for type
declarations is as follows, where ctype is the type’s name and
value ... is the finite set of values.

(defvalues ctype (value ...))

For example, the following defines the domain named
“boolean” that ranges over “false” and “true”:

(defvalues boolean (false true)).

Relations

Once connections are typed, defining relationships among
connections becomes a matter of building Boolean equations
over connection assignments. For instance, the following

equation requires that two Boolean connections, A and B,
have the same value.

(:or (:and (= A true) (= B true))
(:and (= A false) (= B false)))

In general, relationships are defined by well formed
formulas using the following syntactic rules, where wff is a
well formed formula, cname is a connection name, and value

is a connection value.
wff+ (:not wff~ I (:and wff...) I (:or wff...) I (= cname value) I

(== cname cname) I (rname arg ...) I false I true

arg 4 wff I cname I value

While the Boolean functions have their standard semantics,
the two equalities respectively require that a connection has
a particular value and that two connections with the same
type have the same value. Finally, mame denotes a user-
defined relationship. Such a definition has the following
form, where the parameters appear in wff and are replaced by
the arguments in well-formed formulas where mame is used.

(defrelation rname (parameter.. .) wff~

For instance, the following defines a widely used implication
relationship.

(defrelation :implies (wffa wffb)
(:or (:not wffa) wffb))

We finish our definition of relations with a two semantic
restrictions. First, any particular wff can only reference
previously defined relations to keep users from defining
recursive relations that cannot be evaluated. Second, the
arguments associated with parameters in a defrelation are
constrained by where the parameters appear in the wff.
Thus a user cannot mistakenly expand a relation to get
structures like (:not cname) or (= wff value).

Components

Components model primitive device types and are specified
as finite state machines where each state relates component
inputs to outputs in a different way. The syntax for a
component type declaration is as follows, where stype is the
name of the component type, ctype defines the type of
connection cname, and mname denotes a component state.

(defcomponent stype
[:inputs ((ctype cname) ...)]
:outputs ((ctype cname) ...)
:modes ((mname [:cost in4 [:model wn]

[:transitions ((mname wff[:cost ind) ...)]) ...))
Each component state, or “mode” using Livinstone’s
vocabulary, has three attributes: an integer cost that
intuitively corresponds to the likelihood of the component
being in that mode; a wff model relating inputs and outputs
when the component is in the mode; and a set of transitions
denoting how to a component evolves to the next mode.
Each transition has a target mode, a wff precondition for
evolving to the target, and an integer cost of the transition.
In general, costs vary from 0 to 10000 reflect a mode or
transition’s likelihood, where a high cost denotes a low

2

likelihood. Since most modes will be nominal, they will
have an inherently zeroed cost - leading to a default of zero
if the cost attribute is omitted.

For instance, consider the following simple example of an
and-gate. Given the nominal “ok” mode’s model, this gate
definition makes the output reflect a conjunct of the inputs.
While the gate only has one explicitly modeled mode, there
is an implicit unknown mode that all gates have. The
unknown mode costs 10000 and has a model that leaves the
inputs and outputs completely unrelated. In general, the
goal of diagnosis is to find the component modes with the
least cost and models that agree with observations.’

(defcomponent and-gate
:inputs ((boolean il) (boolean i2))
:outputs ((boolean 0))

:modes ((ok :model
(:and (: implies

(:and (= il true)

(= o true))

(:not (:and (= il true)

(= i2 true))

(:implies

(= i2 true)))
(= o false))))))

Modules

A module is a specification of a network of components
and/or other sub-modules. Its main purpose is to improve the
readability and the simplicity of a model. The syntax for a
module specification is as follows, where stype is the module
type’s name, ctype and cname denote typed connections, and
sname denotes a named subsystem of the module.

(defmodule stype
[:inputs ((ctype cname) ...)]
:outputs ((cfype cname) ...)
:connections ((ctype cname) ...)
:structure ((stypesname([cname . . . I) (cname ...)) ...))

While inputs and outputs denote interfaces to a module,
connections reflect internal signals between subsystems. A
structure entry defines the subsystem network as a set of
subsystems with each subsystem’s inputs and outputs.
For example, consider the following definition of a three
input and-gate, where the structure has typed components as
defined in the previous example.

(defmodule and3i
:inputs ((boolean il) (boolean i2) (boolean i3))
:outputs ((boolean out))
:connections ((boolean wire))
:structure ((and-gate a1 (il i2) (wire))

(and-gate a2 (i3 wire) (out))))

We finish our definition of modules with two semantic
restrictions within a structure entry. First, a module
definition can only refer to previously defined module types
- making recursive definitions illegal. Second, the output of
a subsystem cannot directly or indirectly feed back into one
of its inputs - to keep a designer from representing feedback
loops that can cause continual mode switching.

Systems

A system is a specification of a network of components and
modules. Unlike Livingstone, CMPL is extended to enable
the modeling of distributed systems. In CMPL, each
distributed element in the system is defined as a subsystem.
Each subsystem is associated with a list of commands and
observables that are local to that subsystem. The idea is that
the location of the physical device is not important. For
distributed diagnosis, and also for distributed commanding,
the physical location of the devices’ sensors and the physical
location at which the commands are generated are what is
important. The syntax for a system specification is as
follows, where the connections and structure fields mirror
the same fields in a module definition.

(defsystem name
[:subsystems ((name ([cname ...]) ([cname ...])) ...)I
:connections ((cfype cname) ...)
:structure ((sfype sname ([cname ...I) (cname...)) ...))

For instance, the following example defines a simple test
system for our previously defined and3i gate. For
simplicity, this example only has one subsystem and one
gate. All of the top-level Boolean connections are sensed,
and there are no commands feeding into the subsystem.

(defsystem tstl
:subsystems

:connections ((boolean a) (boolean b)

:structure ((and3i gate (a b c)(o))))

((sub nil (a b c 0)))

(boolean c) (boolean 0))

3. MODEL COMPILATION

While CMPL was strongly influenced by the Livingstone
system, our approach to diagnosis is based on knowledge
compilation [Darwiche 1998a,b]. As such, model
compilation based diagnosis is a three step process: (1)
expand the system in to a network of processed components
at compile time; (2) compute the Boolean equation at
compile time; and (3) iteratively evaluate the equation at run
time.

Figure 1 - Graphical representation of and3 i module

* While our examples deal with static mode costs, these costs dynamically
change when folding in transition costs from the currently perceived state.
See discussion of future work in the conclusion for more on this.

Expanding the network

Expanding the network is a simple matter of taking a
defsystem and using defmodules to expand named module
elements within the structure list until only components
remain. For instance the t s t 1 system mentioned above has
a single module element that expands into the following two
components.

((and-gate gate*al (a b) (gate*wire))
(and-gate gate*a2 (c gate*wire) (0)))

As this example implies, name substitution occurs during the
expansion. Inputs and outputs are replaced by actual
parameter names - il, i2, i3, and out respectively
became a, b, c, and 0. Subsystem names within a module
are prefixed by the module's name to assure unique
component names - a1 and a2 respectively became
gate*al and gate*a2. Similarly, connection names are
also prefixed resulting in the gate*wire.

Once the components are determined, their mode definitions
are converted into a Boolean expression in conjunctive
normal form (CNF). Converting mode definitions into a
Boolean expression involves building an equation with the
following form, where sname is the components name, and
each disjunctive entry is for a different mode mname defined
in terms of model wff.

(:and (:or (:not (= mode*sname " m e)) wff)...)

For example, the equation for the gate*al is the
following.

(:and (:or (:not (= mode*gate*al ok))
(:and (:implies

(:and (= a true) (= b true))
(= gate*wire true))

(:not (:and (= a true)

(= gate*wire false))))

(:implies

(= b true)))

(:or (:not (= mode*gate*al unknown))
true))

Each component's Boolean equation is subsequently
expanded with the defrelations, converted into CNF, and
then each (:not (= c V)) in a disjunct gets replaced with
the set of entries { (= c vl) ...} , where vi varies through the
legal values of c not equal to v. Thus the above equation
expands into.

(:and
(:or (= mode*gate*al unknown)

(:or (= mode*gate*al unknown)

(:or (= mode*gate*al unknown)

(= a false) (= b false) (= gate*wire true) I

(= a true) (= gate*wire false))

(= b true) (= gate*wire false)))

Network expansion ends with all components instantiated
with their CNF equations. While this is the internal form
used for diagnosis in Livingstone [Nayak&Williamsl997],
we have an extra step to improve runtime performance.

Building the equation

Building the equation out of a network of CNF components
is a complex process that has been previously defined in
detail [Darwichel998a]. Unfortunately our networks violate
a restriction made by previous compilation work that limits
components to only have one output. We circumvent this
limitation by replacing multiple-output components with
multiple single-output components. There are multiple ways
to do this, and our current approach can be illustrated in
Figure 2.

Figure 2 - Graphical representation of a multiple output
gates replacement structure

In this approach each Oi corresponds with an output, and M
corresponds to the original component's mode. Each of
these new components has its own CNF formula, which is
computed by partitioning the original component's disjuncts
and then adding a few overhead disjuncts. The partition
simply assigns disjuncts that mention no outputs to M and
disjuncts to Oi if they refer to Oi's output but no output for
Oj with j > i. Given the disjuncts assigned to the gates,
the inputs to each gate are determined by which variables
that gate's disjuncts contain.

Unfortunately two gates cannot refer to the same
unobservable mode, which is the primary reason for the M
gate. This gate also contains an overhead disjunct of the
following form for each of the original component's modes
mnamei, where mnamej entries are for modes other than
mnamei.

(:or (= M-output*sname mnamei)
(= mode *sname " m e j) ... j

This collection of disjuncts force M-output *sname,
which is M's output, to be equal to mode*sname, and the
Oi gates have the mode variable replaced with M's output to
avoid sharing an unobservable mode assignment that is not
reflected in the network arcs.

Run time evaluation

After taking care of multiple output gates Darwiche's
algorithm can process the component network to generate a
diagnosis equation for onboard evaluation. For instance, the
equation generated for our simple tstl example is the
following.

(:or (:and (:or (:and (= a true) (= b true))

(:or (:and (= c true) (= o true))
(= mode*gate*al unknown))

(:and (= c false) (= o false))
(= mode*gate*a2 unknown)))

(= mode*gate*al unknown))

(= mode*gate*a2 unknown))))

(:and (:or (= a false) (= b false)

(:or (= o false)

At first inspection this equation looks like any other Boolean
equation, but it has several properties that simplify finding
the cheapest assignment to mode variables satisfying the
equation given current observations. First, the expression is
an and-or graph formally called negation normal form
("F). Second, note that the variables mentioned in each
sub-expression of an :and expression do not appear in
sibling sub-expressions. This form is formally called

4

decomposable negation normal form (DNhF) [Darwiche
20011 and facilitates finding minimal cost diagnoses in time
linear in the equation size.

With a DNNF equation, finding the minimal diagnoses is a
matter of determining the minimum possible satisfaction
cost of each sub-expression and then identifying the sources
of the top level expression’s cost. For instance, suppose that
our t s t 1 example outputted a true value when a, b, and c
are respectively true, true, and false. As illustrated
in Figure 3, the algorithm starts by costing the leaf nodes,
where mode nodes get mode costs and sensed nodes get
either zero or infinite costs depending on observations. In
this case the checked nodes get zero costs. Once leaf costs
are known each and/or node cost is the sudmin of its child
nodes’ costs. In the example, these costs appear above the
nodes. Once the root node’s cost is known, diagnosis goes
back down the structure pruning nodes that do not contribute
to the cost to determine what mode assignments can
contribute to the cost. In this case the mode assignment is
that component gate*a2 is broken.

.I (= a true)
4 (= b true)

(= mode*gate*al unknown)
(= c true)

.I (= o true)
4 (= c false)

(= o false)

>- a:d \,

(= mode*gate*a2 unknown) /
(= a false)

I

(= (= mode*gate*al b false) -:>s: unknown)

(= o false) 10000
or

(= mode*gate*a2 unknown)

Figure 3 - diagnosing example t s t 1 system when c is
false and all other inputs/outputs are true

The reason for the linear performance is that the cost of an
and node can be determined by just looking at its children’s
costs. If the leaves of any and node’s sub-expressions
shared common variables, then the sources of costs would
not be independent and the sum would be an over estimate
of the actual and node’s cost. Computing the actual cost
would then become a lot more complex, and require time
that was exponential in the sum of the sub-expressions’
sizes. This is the ultimate motivation for computing DNhF
Boolean expressions.

4. DISTRIBUTED SYSTEM DIAGNOSIS

Not only does the use of DNNF Boolean expressions
facilitate real-time diagnosis, but it also facilitates
distribution across multiple subsystems, like spacecraft. A
CMPL system definition includes a specification of how the
system is distributed into subsystems. Each subsystem

specification defines the set of observables and commands
that are local to each subsystem. We use this information to
distribute the expression. We will use the following system
example to explain the distribution method. This example
differs from tstl in two ways. It has two and3i modules
and it partitions the sensed values across tree subsystems.

(defsystem tst2
:subsystems

((sl 0 (a b))
(s2 0 (d e f P))
(s3 0 (c 0)))

:connections ((boolean a) (boolean b)
(boolean c) (boolean 0)

(boolean d) (boolean e)
(boolean f) (boolean p)

(and3i gate2 (d e f) (p)))
:structure ((and31 gate1 (a b c) (0))

For this example the tree and its partitioning across the three
subsystems appears in Figure 4. Deriving the partitioning
starts with attributing a number to each subsystem denoting
its location in the subsystems list. Given these numbers, we
associate each observable leaf with the subsystem that
observes it. For instance (= a true) is associated with a
1, which is subsystem Sl’s position. When the children of
an and/or node are either unobservable or have an assigned
number, the and/or node is assigned the maximum of the
numbers assigned to its children. This process continues
until each and/or node has an assigned number, and these
numbers tell which subsystem is responsible for each node
during diagnosis.

(= a true)
(= b true)
(= mode*gatel*al
(= c true)
(= o true)
(= c false)
(= o false)
(= mode*gatel*a2 unknown) /

(= f true) >and
(= p true)

(= f false) \and)Or
(= p false)
(= mode*gate2*a2 unknown)
(= d false)
(= e false)
(= mode*gate2*al unknown)
(= p false)
(= mode*gate2*a2 unknown)/

Figure 4 - partitioning the graph for t s t 2 system across
three subystems

5

In addition to illustrating an example distribution, Figure 4
shows an important property of the distribution in general.
When two top-level modules can be diagnosed in isolation,
their corresponding diagnosing sub-expressions are branches
off of a top-level and node. Thus examples like subsystem
S2’s being able to diagnose an entire substructure is a
common occurrence, and this leads to the communications
between subsystems for diagnosis being a function of
subsystem interaction complexity instead of total system
complexity.

5. INTERFEROMETER EXPERIMENT

In addition to testing DRMD on various circuit examples,
we experimented with a Space Interferometer Mission Test
Bed 3 (STB-3) model [Ingham et al. 20001 as well as the
Formation Interferometer Test Bed (FIT) model, which is an
extension on the STB-3 model. While STB-3 represents a
single spacecraft interferometer, FIT represents a separated
spacecraft interferometer. As illustrated in Figure 5, FIT is
composed of combiner (right) and collector (left) spacecraft.
The collector spacecraft precisely points at a star and
reflects the starlight beam to the combiner spacecraft. While
the combiner spacecraft also points at the star to collect the
starlight, it also precisely points at the collector spacecraft in
order to combine the starlight from the collector spacecraft
with its own. This type of interferometer requires
collaborative work between the two spacecraft, and due to
the interdependencies between the two spacecraft, we must
diagnose the system collectively. Thus, DRMD is well
suited for such a system.

The FIT model has 17 components and 64 finite domain
variables, where 12 variables are observable. The graph that
represents the compiled FIT model consists of 43 18 nodes.
When distributed, the graph has 33 arcs that cross between

Figure 5 - Simplified schematic of the Formation
Interferometer Testbed (FIT). The left side of the dotted
line represents the collector spacecraft and the right side
of the dotted line represents the combiner spacecraft.

spacecraft. With DRMD running on Allegro Lisp under
Pentium 111-M 750 MHz, generating the most-likely
diagnoses from an observation takes between 80 and 500
msec depending on the observation. As all test scenarios
verified, the number of messages passed between the
combiner and collector spacecraft was linear in the number
of cross spacecraft arcs. We also tested DRMD on a subset
of the FIT model that represents the angular metrology of
FIT. Angular metrology is responsible for properly aligning
the two spacecraft, and the angular metrology model is
composed of 4 components and 12 variables of which 3 are
observable. When distributed, the angular metrology graph
had 45 cross-spacecraft arcs. Running various diagnosis
scenarios on the angular metrology system also showed that
the number of messages passed between the two spacecraft
was linear in the number of cross arcs. This result verifies
that the number of communication among subsystems is a
function of subsystem interaction complexity, not the total
system complexity.

6. CONCLUSION

This paper presented a knowledge-compilation based
approach toward implementing an onboard model-based
diagnosis system that both runs in real-time and easily
distributes across a number of processors on one or more
spacecraft. Past model-based diagnosis systems, like
Livingstone, search for the most likely mode by testing a
number of modes against an internal model representation.
Our approach further processes this internal representation
to determine a form that can be evaluated in linear time to
find the most likely mode with an extremely simple
algorithm.

While our work is based on the knowledge compilation
work of Darwiche et al., there has been other work on
offline compilation of Livingstone models on a system
called Mini-ME [Chung et al. 20011. In this work, a model
is compiled into a mapping from conjuncts of sensed values
to disjuncts of mode estimates. This mapping is then used
on line to compute disjunctive sets of mode estimates from
observations, and these sets are processed to compute the
actual mode estimate that optimally satisfies all disjunctive
sets. This approach is very different from the one presented
here. It may be faster on certain cases where the number of
computed disjunctive sets is small, but the optimal
satisfaction of a number of disjunctive sets is an NP-
complete problem requiring a heuristic algorithm to avoid
exponential performance as much as possible. Also, this
approach focuses on the single spacecraft case.

Finally, our current implementation only uses mode costs to
estimate modes given a set of observed variables, and
transitions are ignored. This results in a system that ignores
previous mode estimations when computing a new estimate.
As future work we plan to adapt a belief update approach,
like that used in a Kalman filter, to folding the last estimate

6

into computing the next one. In this way, transitions and
current mode estimations combine to provide a priori mode
costs of the next modes to facilitate determining the next
mode estimations from observations.

ACKNOWLEDGEMENTS

This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. The
authors would also like to thank Adnan Darwiche, Daniel
Dvorak, and Mitch Ingham for discussions contributing to
this effort.

REFERENCES

B. Williams and P. Nayak. A Reactive Planner for a Model-
based Executive. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, Nagoya, Japan,
August 23-29, 1997.

P. Nayak and B. Williams. Fast Context Switching in Real-
time Propositional Reasoning. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, Madison,
Wisconsin, 1998.

A. Darwiche. Model-based diagnosis using structured system
descriptions. Journal of Artificial Intelligence Research,
8:165-222, June, 1998a.

A. Darwiche. Compiling Devices: A Structure-Based
Approach. In Proceedings of the Eighth International
Conference on Principles of Knowledge Representation and
Reasoning (KR), 1998b.

A. Darwiche, Decomposable Negation Normal Form. Journal
of ACM, July 2001.

M. Ingham, B. Williams, T. Lockhart, A. Oyake, M. Clarke,
and A. Aljabri. Autonomous Sequencing and Model-based
Fault Protection for Space Interferometry, In Proceedings of
International Symposium on Artificial Intelligence, Robotics
and Automation in Space, St-Hubert, Canada, June 2001.

S. Chung, J. Van Eepoel and B. Williams, “Improving
Model-based Mode Estimation through Offline
Compilation,” International Symposium on Artificial
Intelligence, Robotics and Automation in Space, St-Hubert,
Canada, June 200 1.

Science degree at MIT and has been awarded a NASA
Graduate Student Research Program fellowship for his
doctoral studies. His current research includes the
development of Titan, a model-based executive capable of
autonomously estimating the state of spacecraf, diagnosing
and repairing faults, and executing commands. In 2002, he
worked with the Arti9cial Intelligence Group at the NASA
Jet Propulsion Laboratory on the development of a
distributed model-based executive.

Dr. Anthony Barrett is a senior member of the Art$cial
Intelligence Group at the Jet Propulsion Laboratory,
California Institute of Technology where his R&D activities
involve planning, scheduling, and diagnosis applied to
controlling constellations of spacecraf. He holds a B.S. in
Physics, Computer Science, and Applied Mathematics from
James Madison University and both an M.S. and PhD in
Computer Science from the University of Washington. His
research interests are in the areas of planning, scheduling,
executives, and multi-agent systems.

Seung Chung is a Graduate Research Assistant at the MIT
Space Systems and Artificial Intelligence Laboratories,
working with Pro$ Brian Williams. He received his
Bachelor of Science degree from the Department of
Aeronautics and Astronautics Engineering at the University
of Washington in 1999. He is completing a Master of

7

