
JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e S y s t e m s

A Sof tare Measurement and Fault
Modeling Technique

JPL IT Symposium
November 4,2002

Allen Nikora John C. Munson
Quality Assurance Section
Jet Propulsion Laboratory

Department of Computer Science
University of Idaho

The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology. This work is sponsored by the National Aeronautics and Space Administration’s Office of
Safety and Mission Assurance under the NASA Software Program led by the NASA Software IV&V Facility.
This activity is managed locally at JPL through the Assurance Technology Program Office (ATPO).

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n a n d S o f t w a r e S y s t e m s

Agenda
Overview
Measuring Software Evolution
Measuring Software Faults
The DARWIN Network Appliance
Current Work
Summary
Future Work

Date: 4 November, 2002 2 Software Engineering Technology

w

- 3 (0

LL
U

C

m

.- I
s

a,
c

a,
>
a,
c

0

m 0
n
 a, v

)
a,

h
.
 a,

c
,

.
I

c
,

c
,

c
,

a L L

O
S

cn

=-

= . ->
v

)
*

-
 0

I
.

m
e v

,
s
 .- 0

.

0

r m

I
L

C
I

v
)
a,

S

3

C
I

*

.-

U

-
 m 0

(3

0

0

S

c

0

a,
+

 a,
S

0

0

*

>r
w

0

0

e
c

0

m

C

Q
,

C

w

c
u1

I

s 5
.- .- 2 B v
)

M

cy
0

0

N

5-
.Q Q

,
> 0
Z

d

Q
,

Q

E

.. w

a

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ion o n d S o f t w a r e S y s t e m s

Measuring Software Evolution

Modem software systems change
continuously
They evolve functionally
The code base evolves as a result
This process must be measured to be
managed

Measuring Software Evolution

c
I I --

Software Evolution Tree

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

-- ---- ----- ---_- -- -_--
n and S o f t w a r e S y s t e m s

Measuring Software Evolution
The Measurement Problem

Software systems are composed of
components or modules
Anytime a component changes it must be
re-measured
Over time components
- Are added
- Are deleted

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n a n d S o f t w a r e Systems

H
I

Measuring Software Evolution
Build N Build N+I

The A A

H

Problem:
Part 1 I C I L

u D

I I

I F

Software Engineering Technology 7 Date: 4 November, 2002

JPL IT Symposium - A Software Measurement and Fault
-- Modeling Technique

ion and Sof twere S y s t e m s

20

Measuring Software Evolution

15 19 18

The
Problem:

Part 2

Module
LOC

Unique
Operators

Build 1 I Build 2 I I

I
200 I 250 1 210 I 230 I

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n a n d S o f t w a r e S y s t e m s

Measuring Software Evolution

Measurement Baseline

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e S y s t e m s

Measuring Software Evolution
Source Code

Measurement
Tool

Module

Measuring Software

LOC
Stmts
N1
N2
eta1
eta2

14
12
30
23
15
12

Module
Characteristics

Measuring Software Evolution

operands
Comments

Unique operators
Paths

Rotated ComDonent Matrix

.251 .686 9.1 37E-02

.495 .675 9.61 5E-02

.173 -.118 .888

I Nodes1 -3341

~

Total operators1 .2831 .Soof .67
Total oeerandd ,2831 .6OOl .67

I Eigenvalue:l 4.904 4.27q 23421
Extraction Method: Principal Component Analysis. Rotation Method: Varimax
Normalization.
a Rotation converged in 5 iterations.

The Principal Components

with Kaiser

Date: 4 November, 2002 11 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n a n d S o f t w a r e Systems

Measuring Software Evolution
A Fault Index

FI is a synthesized metric
m

= C i l . d B B

Pi J j
j=l

FI is a fault surrogate
- Composed of metrics closely related to faults
- Highly correlated with faults

Date: 4 November, 2002 12 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e S y s t e m s

Measuring Software Evolution

Program

easurement
Tool

122354 122033923834

~

7 1364 12215939238

0

0

0

1 1 2154 12241 3923835

533441220539 13844

42 55 54 12 113 29 234 14

Lots of Data

Principal
Components

An a I y s i s

Q

. Converting Data to Information

100

90

110
95

105

FI

Date: 4 November, 2002 13 Software Engineering Technology

a, 0

--
= I- =
m

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e S y s t e m s

Measuring Software Evolution
Build Evolution

Different modules in different builds
- Mi9j a set of modules in build i

. .
- Mi” set of modules in buildj
- M;?’set of common modules in both builds
FI of build i Ri = C&I- Cpi a

FI of buildj Rj = Cp; + Cpl

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ion a n d S o f t w a r e Systems

Measuring Software Evolution
Measuring Change Activity

Code Churn

Net Code Delta

Net Code Churn

Software Engineering Technology 16 Date: 4 November, 2002

JPL IT Symposium - A Software Measurement and Fault

-- Modeling Technique
i o n and S o f t w a r e Sys tems

Measuring Software Faults
Developing software fault models depends on
definition of what constitutes a fault
Desired characteristics of measurements,
measurement process
- Repeatable, accurate count of faults
- Measure at same level at which structural

measurements are taken
Measure at module level (e g , function, method)

- Easily automated

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e S y s t e m s

Measuring Software Faults

Approach
Examine changes made in response to
reported failures
Base recognitiodenumeration of software
faults on the grammar of the software
system’s language
Fault measurement granularity in tems of
tokens that have changed

Date: 4 November, 2002 18 Software Engineering Technology

f t w

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

S y s t e m s

Measuring Software Faults
Approach (cont'd)

Example 1
Original statement: a = b + c * d;
Intended statement: a = b + c / d;
One token changed - "*" 3
- Codingerror

Count number of faults as 1

Example 2
Original statement: a = b + c * d;
Intended statement: a = b + (c*x)
+ sin(z);
Substantial difference between
first and second statements
- Reflects design rather than coding

problem
Fault measurement method
should reflect the degree of
change

Software Engineering Technology Date: 4 November, 2002 19

H

E

al
L

H

r

111

al

E

L
-

3

c

- 0

111

- e: E

F4
0

1

c6

sz; 0

c

2
 c, k

43 m

d
)

G

d
)

d
)

0

m

>
>

I

I

Td
F:
a

'
f

r

.
A

a

Q

d
)

k

0

c
,

0

3

0
 F:-

c
,
a

2.0;

m

m
a

u

t4

bo
b

o
a

,

I
I

---- --- v_ JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

=--= : - -- - - -
-I .- --

i o n a n d S o f t w a r e S y s t e m s

Measuring Software Faults
More Examples

Example 1 Example 2 Example 3
Original statement: a = b + c; Original statement: a = b - c; Original statement: a = b - c;

Modified statement: a = b - c;

B, - B, = {<+>, <-> } B,-B,={} >, }

PI I = P,l, IB, - B,I = 2 IS, I = 1B31 IB, - B,I = 0 . One token has changed 3 1 fault 1 fault representing incorrect . P3I = 6 IB41 = 8 IB41 - lB31 = 2

- B, = {<a>, <=>, , <+>, <e>} - B, = {<a>, <=>, , <->, <e>} - B, = {<a>, <=>, <e>, <->, }
Modified statement: a = c - b; Modified statement: a = 1 + c - b;

- B, = {<a>, <=>, , <->, <c>} - B, = {<a>, <=>, <e>, <->, } - B, = {<a>, <=>, <I>, <+>, <e>, <-

B, - B, = {<1>, <+>}

sequencing 2 new tokens representing 2 faults

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e Systems

The Real Problem is
Data Management

Date: 4 November, 2002 22 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e Systems

0

0

0

0

The DARWIN Network Appliance

Measurement process is transparent
- incorporated in configuration control

Measurement data converted to management
e n . intormation
Designed to a measurement standard
Monitors
- Software evolution
- Test activity
- Requirements traceability

- - - - - -
JPL IT Symposium - A Software Measurement and Fault

M ode1 in g Technique
i o n and S o f t w a r e S y s t e m s

The DARWIN Network Appliance

I I n trane t I
I

Developers Test Team

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e Systems

The C ARWIN Network Appliance
ExStmt

NonEx

4

?73

Nodes

Edges

Paths

MaxPath

Path

Cycles

A A

Total comment count
Executable statements
Non executable statements
Total number of operands

Unique operands

Total number of operators

Unique operators

Unique operators with overloading

Number of nodes in the module control flowgraph
Number of edges in the module control flowgraph
Number of distinct paths in the module control
flowgraph
Maximum path length in the module control
f I owg ra p h
Average path length in the module control
flowg ra p h
Total cycle count in the module control flownraDh

The CMA Metric Tool

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

o n and S o f t w a r e S y s t e m s

The DARWIN Network Appliance
The PCNFI Tool

Builds baseline measurements
Conversion process is transparent
- integrated into build process

Builds baseline transformation elements
Converts new module measurements to baselined
measures
- Can convert one module
- Can convert whole build

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e S y s t e m s

The DARWIN Network Appliance

The Evolution Tool
Compares two builds
- module by module
- relative to baseline system

Transparent tool
- integrated into the build process

- code deltas
- net code change (code churn)

Computes

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e S y s t e m s

The DARWIN Network Appliance

The Fault Measurement Tool
Retrieves code deltas from CVS, RCS or
SCCS
Matches code deltas with trouble reports
Measures associated faults

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

t i o n a n d S o f t w a r e Systems

The DARWIN Network Appliance

Tester Jnlonnstion

Educ.tion

Roiart Manager

The aod of the Dsnvn web porW u to provide a rohd eary to use mrficc to L e D m system C " e d n dw web p o d you c a Ld
Manlncr Mmphon. Tester Momphoh Drrwn Educabon, and Proltct Mmwemerit

DARWIN Main Page
S WMeasurement

JPL IT Symposium - A Software Measurement and Fault
Mod el i ng Tech n i q ue

n and S o f t w a r e S y s t e m s

The DARWIN Network Appliance

ANONYMOUS Da~wUi Main

Manager
Information

Tester Information

Education

F'roiect Manager
.-____

View Available
Databases

Feedback

Chck here for help

DARWIN Plot of Code Churn and Code Delta

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e Systems

The DARWIN Network Appliance

Build Measurement Details

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e Systems

Current Work

Collaboration with JPL software
development efforts:
- Measure software evolution
- Measure software faults
- Develop fault models

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ion and S o f t w a r e Systems

Faults vs. Cumulative Churn By Module
Smoothed Fault Counts Used, Last 2 Observations Removed

y = 0.1574~ + 1.1:
R2 = 0.7735

250

v

Q
Q.
.g 200

B
u)

m u.
0

C

+
'3 150
IC

.L,

: 100
0
rr a
0

UJ

s
E 50

0

0 200 400 600 800 1000 1200 1400
Cumulative Churn per Module - Excludes Initial Version FI Value

- - _ _ _ _ ~ _ _ - _ _ _ _

Fault
Model
Example

Current Work

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i o n and S o f t w a r e S y s t e m s

Summary

Developed a practical software measurement and
fault modeling framework
- Repeatable, consistent measurement
- Faults measured at same level at which structural measurements

- Easily automated
- Transparent to developers

are taken, i.e., function and method level

No additional activities for developers
No footprint in development environment

Resource for production software development efforts
Research tool

- Dualuse:

Date: 4 November, 2002 34 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and S o f t w a r e S y s t e m s

Future Work

Disseminate techniques
- Other JPL projects
- Other NASA centers

Funded to collaborate with GSFC SATC in FY’03
- Industry
Extend techniques into earlier life cycle
activities

