JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and Software Systems

A Software Measurement and Fault
Modeling Technique

JPL IT Symposium
November 4, 2002

Allen Nikora John C. Munson
Quality Assurance Section Department of Computer Science
Jet Propulsion Laboratory University of Idaho

The work described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology. This work is sponsored by the National Aeronautics and Space Administration’s Office of
Safety and Mission Assurance under the NASA Software Program led by the NASA Software IV&V Facility.
This activity is managed locally at JPL through the Assurance Technology Program Office (ATPO).

Date: 4 November, 2002 1 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

e Overview

e Mecasuring Software Evolution

» Measuring Software Faults

 The DARWIN Network Appliance
* Current Work

e Summary

* Future Work

Date: 4 November, 2002 2 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Overview

* Classical software reliability modeling techniques can
be useful in managing testing resources by

answering the following questions:
« What is the current software reliability? -
* How much longer must the software be tested to achieve the
required reliability?
* What will be the impact to a software system’s reliability if
insufficient testing resources are available?

» Classical software reliability models can only used
late in a software development effort, usually after
unit test

* Goal - develop measurement and modeling
techniques that can be used to estimate fault
content/reliability prior to test

Date: 4 November, 2002 3 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ormation and Software Systems

RN

Measuring Software Evolution

* Modern software systems change
continuously

e T
e T

hey evolve functionally

ne code base evolves as a result

¢ T

n1s process must be measured to be

managed

Date: 4 November, 2002 4 Software Engineering Technology

JPLIT Symposiuni - A Software Measurement and Fault
Modeling Technique

Measuring Software Evolution
”‘Q:";og'g

g v |
fem ol o e o e e |
= e
=t
c—c—ge—e—o

Software Evolution Tree

Date: 4 November, 2002 5 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

v 555

Measuring Software Evolution

The Measurement Problem

* Software systems are composed of
components or modules

* Anytime a component changes it must be
re-measured

* Over time components
- — Are added |
— Are deleted

Date: 4 November, 2002 6 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Measuring Software Evolution

Build N Build N+1

The A S A
Problem: B » B
Part 1 C kﬂ
D — D
E +— E

F —

G - G

L S v

| —

J T

K =

Date: 4 November, 2002 7

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

on and Software Systems

. 5
The _ Build1 Buil

Module “— A T_

Problem: Toc 200 250 | 210 | 230

Part 2 [Unique 20 15 19 18
Operators

>
ve)

Date: 4 November, 2002 8

Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Measurement Baseline

Date: 4 November, 2002 9 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fauit
Modeling Technique

Measuring Software Evolution

Source Code
{ int 4,3; LOC 14
far (i=0; Arvay[i] [0] 1="\0'; i++) Stmts 12
{ j = strawp(Strirg, Amaylil); N1 30
if G0 N2 23
if (j<0) ’ etal 15
retum -1; eta2 12
elEE 3 []
}i , R
, Measurement .
Tool
Module
Module
Characteristics

Measuring Software

Date: 4 November, 2002 10 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

mation and Software Systems

Measuring Software Evolution

Rotated Component Matrix

Component

1 2 3

Edges .863 331 .267

Nodes| .860 .334 .269

Maximum path .858 .361 293
length

Average path length .851 .353 331

Cycles .690 182 -7.059E-03

Nonexecutablel 645 510 199
statements

Executablj 589 492 481

statement

Unique operands| .333 .896] 7.802E-02

Unique actual 333 .896] 7.802E-02
operands

Comments] 251 686] 9.137E-02

Unique operators| .495) 675 9.615E-02

Paths| 173 -.118 .888

Total operators| .283 .600 676

Total operands| 283 .600 676

Eigenvalue| 4.903 4.279 2.342

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser
Normalization.
a Rotation converged in 5 iterations.

The Principal Components

Date: 4 November, 2002 11 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ation and Software Systems

ok EpkiSi o

Measuring Software Evolution

A Fault Index
e FI is a synthesized metric

pl.B = iﬂfdf
j=1
* FI1s a fault surrogate
— Composed of metrics closely related to faults
— Highly correlated with faults

Date: 4 November, 2002 12 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

il Measurement

1223 5412203 39 238 34

7 1364 12215939238

11215412 241 39 238 35

533441220539 138 44

425554 1211329234 14

Program

Lots of Data

Principal

Components

Analysis

Converting Data to Information

100

Date: 4 November, 2002

13

Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ond Software Systems

Measuring Software Evolution
Build i Baselined Build i

Measurement
Tools

Code

i

Source

FI Values

4

Code
Deltas
Build | Baselined Build |
Comparing Two Builds
Date: 4 November, 2002 14

Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fauit
Modeling Technique

=Missionzlnfarmation and Software Systems

St LT B

o g D

Measuring Software Evolution

Build Evolution

» Different modules in different builds
— M.’ set of modules in build ;
— M,” set of modules in build j
— M set of common modules in both builds

e Flofbuildi R'=) o+ 0.

ceM, aeM,

e Flofbuildj & =2pl+2n

ceM, beM,

Date: 4 November, 2002 15 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ISR SN Vs R T R R S T e e

Measuring Software Evolution

Measuring Change Activity

e Code Churn
Zi,j — 5i,j

* Net Code Delta
NI = Y5 - Y g+ Yol

ceM, aeM, beM,

e Net Code Churn |
(DY 2RI W ALY

i,J i,J
m.eM m,eM, myeM,

B,

P =P,

Date: 4 November, 2002 16 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

and Software Systems

Measuring Software Faults

* Developing software fault models depends on
definition of what constitutes a fault

e Desired characteristics of measurements,
measurement process
— Repeatable, accurate count of faults

— Measure at same level at which structural
measurements are taken

* Measure at module level (e.g., function, method)
— Easily automated

Date: 4 November, 2002 17 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i AT B TR b S g AT A M AT S, il s gt b Gty L i
R I R o R R e T

Measuring Software Faults

Approach

« Examine changes made 1n response to
reported failures

» Base recognition/enumeration of software
faults on the grammar of the software
system’s language

 Fault measurement granularity in terms of
tokens that have changed

Date: 4 November, 2002 18 Software Engineering Technology

on and Software Systems

ST

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Measuring

Software Faults

Approach (cont’d)

Example 1
* Original statement: a=Db + ¢ * d;
* Intended statement: a=b + ¢/ d;

* One token changed — “*” = «“/”
- — Coding error

e Count number of faults as 1

Example 2

* Original statement: a=b +c¢ * d;

* Intended statement: a = b + (c*x)
+ sin(z);

» Substantial difference between
first and second statements

— Reflects design rather than coding
problem

* Fault measurement method
should reflect the degree of
change

Date: 4 November, 2002

19

Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

and Software Systems

B Sy Dt et % A '9??'“‘4‘,@« T -i?‘i»;i’?f"’l R P I S T NS g sy e

Measuring Software Faults

* Consider each line of text in each version of the
program as a bag of tokens

— It'a change spans multiple lines of code, all lines for the
change are included in the same bag

* Number of faults based on bag differences
between
— Version of program exhibiting failures
— Version of program modified in response to failures
* Use version control system to distinguish between
— Changes due to repair and

— Changes due to functionality enhancements and other
non-repair changes

Date: 4 November, 2002 20 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Measuring Software Faults

More Examples

Example 1 Example 2 Example 3
* Original statement: a=b + c; * Original statement: a=b - ¢; * Original statement: a=Db - ¢,
— B, = {<a>, <=>, , <>, <¢>} - B, = {<a>, <=>, , <> <c>} — B, = {<a>, <=>, <c>, <->, }
s Modified statement: a="b - c; * Modified statement: a=c - b; s Modified statement: a=1 +c - b;
- B, = {<a>, <=>, , <->, <¢>} - By = {<a>, <=>, <¢>, <>, } - By = {<a>, <=, <1>, <>, <¢>, <-
* B, -B,={<> <>} « B,-B,={} >, }
° — =i]>. <+>
* [B,[=IB)} |B, By =2 * IBy|=[Byl, [B,~By=0 By=B,= {sI> <2y
* One token has changed = 1 fault « 1 fault representing incorrect " Byl =6,[B,[=8,[B,|~[By| =2

sequencing * 2 new tokens representing 2 faults

Date: 4 November, 2002 21 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and Software Systems

The Real Problem 1is
Data Management

Date: 4 November, 2002 22 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

e

ation and Software Systems

R R T R s

The DARWIN Network Appliance

« Measurement process 1s transparent
— incorporated in configuration control

« Measurement data converted to management
information

* Designed to a measurement standard

e Monitors

— Software evolution
— Test activity
— Requirements traceability

Date: 4 November, 2002 23 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

ion and Software Systems

The DARWIN Network Appliance

Managers

| Intranet

Test Team

Date: 4 November, 2002 24 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

_—

ormation and Software Systems

The DARWIN Network Appliance

Comm Total comment count

ExStmt | Executable statements

NonEx Non executable statements

N, Total number of operands

n Unique operands

N, Total number of operators

m, Unique operators

, Unique operators with overloading

Nodes Number of nodes in the module control flowgraph

Edges Number of edges in the module control flowgraph

Paths Number of distinct paths in the module control
flowgraph

MaxPath | Maximum path length in the module control
flowgraph

Path Average path length in the module control
flowgraph

Cycles Total cycle count in the module control flowgraph

The CMA Metric Tool

Date: 4 November, 2002 25 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

I“i,on ond Software Systems

Y L R
VA 1 T e B AR R S NI LS

The DARWIN Ne

The PCA/FI Tool

e Builds baseline measurements
» Conversion process 1s transparent
— integrated into build process
Builds baseline transformation elements

e Converts new module measurements to baselined
measures
— Can convert one module
— Can convert whole build

twork Appliance

Date: 4 November, 2002 26 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

'l;ion ond Software Systems

The DARWIN Network Appliance

The Evolution Tool

* Compares two builds
— module by module
— relative to baseline system

» Transparent tool
— integrated into the build process

e Computes
— code deltas
— net code change (code churn)

Date: 4 November, 2002 27 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
‘Modeling Technique

d Software Systems

The DARWIN Network Appliance

The Fault Measurement Tool

» Retrieves code deltas from CVS, RCS or
SCCS

» Matches code deltas with trouble reports
* Measures associated faults

Date: 4 November, 2002 28 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

n and Software Systems

ar
Eu Ex 1‘- ﬁc oo :

. Back Fuwist ‘Reked. ‘Home . Seach Nétscipe Pird - Sécily . Shop St .

Y izh " Bookmaks " J Locatons [t /7SWMeasuement.plLnasa gov/ =] €3 whats Reloted
B0SS ELIAS -PU's| MeoigMaker Re's Pron Sek EIS MossagingE JFL Securty il JPL KnowWho SCR Help- Tatl Darwin PulTY Documante AckvePotUser | EAD Home NASAXSD0Dve Hen

Darwin - Darwin Portal

e are Sy st Ietemanut
Navigation

Darwin Main
Manager Informasion

Tester Information

Education

Project Manager

View Available
Databases
Feedback
The goal of the Darwin web portal is to provnde a solid easy to use mterface to the Darwin system. Contamed in this web portal you can find
Manager Information, Tester Information, Darwin Education, and Project Management
Hl[.ip.!’" buum nt: Done. o R 3 k AT "f""”"‘""’l—“"f“"t'"“i Ty D @D

DARWIN Main Page
SWMeasurement.jpl.nasa.gov (JPL internal only)

Date: 4 November, 2002 29 Software Engineering Technology

JPLIT Symposium - A Software Measurement and Fault
Modeling Technique

{ﬁ“ Graph of Code Chutn and Code Delta in the project mdsvs cvs Ne!;stage

Fie . Edt < 'View ' Go Communicator Help ; i S ’

M Back® Fonvard Rgload Home = Search Ne{:cape Print Securily “Shop : Stop s S .

Y wh Bookmerks b Location:[htp://5WMeasuement plnasa govicg/graph.cg ~] @ Whats Related
7 BOSS ELIAS -JPL's| . Mebting Maker - Ro's Psion Seri - EIS Messaging E- JPL Securty (U JPL Know Who SCR Help- Tabl- Damwin PulTY Documenta ActivePed {ser EAD Hor

Darwin - Darwin Portal
Soft sware Systems lotemation
Navigati s
avigation Graph of Code Churn and Code Delta for the project
Darwin Mai
=enAcen ANONYMOUS
Manager
Information T T T — T v
600000 |-
500000 |-
Education -
g #0000 /""p
Project Manag g ’
e 2 300000 /'M
View Available 200000 | '//
Databases 100000 | ":., 1
M o f W ‘. Step/churnB768 .dat” using 1:2 OJ-A
o L . '../trme"dr;lt.a@ 63, it " LN 1:2 +
10/01 01/01 04701 07/01 10/01 01701 04/01 07/01
Date
Click here for help
ST oamenkibone T R EHa 65 eP B 2| 4

DARWIN Plot of Code Churn and Code Delta

Date: 4 November, 2002 30 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

The DARWIN Network Appliance

£ (Non-zera) Modules for biild 2002-04-02 of pm]ul mdus _cvs, sorked by Chuarn - Netstipe' -
& £ - Yew ' Go ' Communicater: Hep -

Back - Touasic 1/ Peload | Home Semch - Netwcige - Fres smw Shop Gions : " N -
i Bokaks . Locntore [S Pnosa gov/e 7 ki = proroctcmdsvS.ovelace okamen S005 0402 jqj'w.nw : DR Y |
BOSS ELMS -JPL's | 'Maating Maker ' Ro's Pyion Seri EIS Messagng E JPL Securty U JPL Krow Who SCRHelp-Tabl Dawin PuTTY Docuinents ActivePeil User EAD Home NASA X.500 Dire -Hong TY Documents ActivePed User EAO Home NASA X 500 Dise Horg
(Non-zero) Modules for build 2002-04-02 of project anonvmous , sorted by Churn since baseline. B! :]
g N o ST o T o T lChumI"rum
" % Baseline
ldoProlog(XML _Parserparser,contENCODING*enc, constchar*s ,constchar *end,inttok, consuhu'nen,comtchu‘ﬁenPI;; T {3243 906078
Mestlntervalic: Testlntervalic) T T Bi3serenn]
o0 o T 3108 478289
mmm(xm, _Passerparser,constENCODING*enc, constchar~attStr TAG, _NAME*tagNamePts BINDING*“bindings Pir) o 3025659454
processMi AndPredict(constMds: Fw: Time: Tmgt RTEpoch¤t,consthids:F . Tame: Tmgt- RTEpochistop) - ST 3011.455888
jcamain(ntarge,charargv(T T T esei0n738
PREFD(scanAlts) T - T [2848.505049 | -
T . ‘|2838428107
tate)
]281 2| -
2775845448
‘Panmmget'l‘,yu Stri st string®3p)

[ge }xni)r(cmuas <Fo. Tane: 'rmlmzpom:)

~leos102760”

[670.521970”
"~ l660.459373
" l610.636144”
1609.995906
"|570.089463
 [545.4 460083

rMath nmv"&..e., . double&iambda)

rnelpom(omcun&mor)

E‘F&:l Docuenert Bona

Build Measurement Details

A—
ST

Date: 4 November, 2002 31 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

i@n and Software Systems

Current Work

e Collaboration with JPL software
development efforts:

— Measure software evolution
— Measure software faults
— Develop fault models

Date: 4 November, 2002 32 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

Current Work

Faults vs. Cumulative Churn By Module y=0.1574x+ 1.13

Fault Smoothed Fault Counts Used, Last 2 Observations Removed R*=0.7735
Model 250

©
Example | i ..

©

Q.

[+/]

o

a

3 150

(TS

©

€

3 100

Q

©

[+]

£

3 50

E

/2]

0 200 400 600 800 1000 1200 1400
Cumulative Churn per Module - Excludes Initial Version Fl Value

Date: 4 November, 2002 33 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

and Software Systems

« Developed a practical software measurement and
fault modeling framework

Repeatable, consistent measurement

Faults measured at same level at which structural measurements
are taken, i.e., function and method level

Easily automated
Transparent to developers
« No additional activities for developers
 No footprint in development environment
Dual use:

« Resource for production software development efforts
» Research tool

Date:

4 November, 2002 34 Software Engineering Technology

JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

mation and Software Systems

Future Work

* Disseminate techniques
— Other JPL projects

— Other NASA centers
* Funded to collaborate with GSFC SATC in FY’03

— Industry

« Extend techniques into earlier life cycle
activities

Date: 4 November, 2002 35 Software Engineering Technology

