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Overview

* Classical software reliability modeling techniques can
be useful in managing testing resources by

answering the following questions:
« What is the current software reliability? -
* How much longer must the software be tested to achieve the
required reliability?
* What will be the impact to a software system’s reliability if
insufficient testing resources are available?

» Classical software reliability models can only used
late in a software development effort, usually after
unit test

* Goal - develop measurement and modeling
techniques that can be used to estimate fault
content/reliability prior to test
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Measuring Software Evolution

* Modern software systems change
continuously

e T
e T

hey evolve functionally

ne code base evolves as a result

¢ T

n1s process must be measured to be

managed
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Measuring Software Evolution
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Software Evolution Tree
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Measuring Software Evolution

The Measurement Problem

* Software systems are composed of
components or modules

* Anytime a component changes it must be
re-measured

* Over time components
- — Are added |
— Are deleted
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Measuring Software Evolution
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Measurement Baseline
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Measuring Software Evolution

Source Code
{ int 4,3; LOC 14
far (i=0; Arvay[i] [0] 1="\0'; i++) Stmts 12
{ j = strawp(Strirg, Amaylil); N1 30
if G0 N2 23
if (j<0) ’ etal 15
retum -1; eta2 12
elEE 3 [ ]
}i , R
, Measurement .
Tool
Module
Module
Characteristics

Measuring Software

Date: 4 November, 2002 10 Software Engineering Technology




JPL IT Symposium - A Software Measurement and Fault
Modeling Technique

mation and Software Systems

Measuring Software Evolution

Rotated Component Matrix

Component

1 2 3

Edges .863 331 .267

Nodes| .860 .334 .269

Maximum path .858 .361 293
length

Average path length .851 .353 331

Cycles .690 182 -7.059E-03

Nonexecutablel 645 510 199
statements

Executablj 589 492 481

statement

Unique operands| .333 .896] 7.802E-02

Unique actual 333 .896] 7.802E-02
operands

Comments] 251 686] 9.137E-02

Unique operators| .495) 675 9.615E-02

Paths| 173 -.118 .888

Total operators| .283 .600 676

Total operands| 283 .600 676

Eigenvalue| 4.903 4.279 2.342

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser
Normalization.
a Rotation converged in 5 iterations.

The Principal Components
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Measuring Software Evolution

A Fault Index
e FI is a synthesized metric

pl.B = iﬂfdf
j=1
* FI1s a fault surrogate
— Composed of metrics closely related to faults
— Highly correlated with faults
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Measuring Software Evolution
Build i Baselined Build i

Measurement
Tools

Code

i

Source

FI Values
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Code
Deltas
Build | Baselined Build |
Comparing Two Builds
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Measuring Software Evolution

Build Evolution

» Different modules in different builds
— M.’ set of modules in build ;
— M,” set of modules in build j
— M set of common modules in both builds

e Flofbuildi R'=) o+ 0.

ceM, aeM,

e Flofbuildj & =2pl+2n

ceM, beM,
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Measuring Software Evolution

Measuring Change Activity

e Code Churn
Zi,j — 5i,j

* Net Code Delta
NI = Y5 - Y g+ Yol

ceM, aeM, beM,

e Net Code Churn |
(DY 2RI W ALY

i,J i,J
m.eM m,eM, myeM,

B,

P =P,
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Measuring Software Faults

* Developing software fault models depends on
definition of what constitutes a fault

e Desired characteristics of measurements,
measurement process
— Repeatable, accurate count of faults

— Measure at same level at which structural
measurements are taken

* Measure at module level (e.g., function, method)
— Easily automated
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Measuring Software Faults

Approach

« Examine changes made 1n response to
reported failures

» Base recognition/enumeration of software
faults on the grammar of the software
system’s language

 Fault measurement granularity in terms of
tokens that have changed
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Measuring

Software Faults

Approach (cont’d)

Example 1
* Original statement: a=Db + ¢ * d;
* Intended statement: a=b + ¢/ d;

* One token changed — “*” = «“/”
- — Coding error

e Count number of faults as 1

Example 2

* Original statement: a=b +c¢ * d;

* Intended statement: a = b + (c*x)
+ sin(z);

» Substantial difference between
first and second statements

— Reflects design rather than coding
problem

* Fault measurement method
should reflect the degree of
change
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Measuring Software Faults

* Consider each line of text in each version of the
program as a bag of tokens

— It'a change spans multiple lines of code, all lines for the
change are included in the same bag

* Number of faults based on bag differences
between
— Version of program exhibiting failures
— Version of program modified in response to failures
* Use version control system to distinguish between
— Changes due to repair and

— Changes due to functionality enhancements and other
non-repair changes
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Measuring Software Faults

More Examples

Example 1 Example 2 Example 3
* Original statement: a=b + c; * Original statement: a=b - ¢; * Original statement: a=Db - ¢,
— B, = {<a>, <=>, <b>, <>, <¢>} - B, = {<a>, <=>, <b>, <> <c>} — B, = {<a>, <=>, <c>, <->, <b>}
s  Modified statement: a="b - c; * Modified statement: a=c - b; s Modified statement: a=1 +c - b;
- B, = {<a>, <=>, <b>, <->, <¢>} - By = {<a>, <=>, <¢>, <>, <b>} - By = {<a>, <=, <1>, <>, <¢>, <-
* B, -B,={<> <>} « B,-B,={} >, <b>}
° — =i]>. <+>
* [B,[=IB)} |B, By =2 * IBy|=[Byl, [B,~By=0 By=B,= {sI> <2y
* One token has changed = 1 fault « 1 fault representing incorrect " Byl =6,[B,[=8,[B,|~[By| =2

sequencing * 2 new tokens representing 2 faults
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The Real Problem 1is
Data Management
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The DARWIN Network Appliance

« Measurement process 1s transparent
— incorporated in configuration control

« Measurement data converted to management
information

* Designed to a measurement standard

e Monitors

— Software evolution
— Test activity
— Requirements traceability
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The DARWIN Network Appliance

Managers

| Intranet

Test Team
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The DARWIN Network Appliance

Comm Total comment count

ExStmt | Executable statements

NonEx Non executable statements

N, Total number of operands

n Unique operands

N, Total number of operators

m, Unique operators

, Unique operators with overloading

Nodes Number of nodes in the module control flowgraph

Edges Number of edges in the module control flowgraph

Paths Number of distinct paths in the module control
flowgraph

MaxPath | Maximum path length in the module control
flowgraph

Path Average path length in the module control
flowgraph

Cycles Total cycle count in the module control flowgraph

The CMA Metric Tool
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The DARWIN Ne

The PCA/FI Tool

e Builds baseline measurements
» Conversion process 1s transparent
— integrated into build process
Builds baseline transformation elements

e Converts new module measurements to baselined
measures
— Can convert one module
— Can convert whole build

twork Appliance
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The DARWIN Network Appliance

The Evolution Tool

* Compares two builds
— module by module
— relative to baseline system

» Transparent tool
— integrated into the build process

e Computes
— code deltas
— net code change (code churn)
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The DARWIN Network Appliance

The Fault Measurement Tool

» Retrieves code deltas from CVS, RCS or
SCCS

» Matches code deltas with trouble reports
* Measures associated faults
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The DARWIN Network Appliance
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Current Work

e Collaboration with JPL software
development efforts:

— Measure software evolution
— Measure software faults
— Develop fault models
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Faults vs. Cumulative Churn By Module y=0.1574x+ 1.13
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« Developed a practical software measurement and
fault modeling framework

Repeatable, consistent measurement

Faults measured at same level at which structural measurements
are taken, i.e., function and method level

Easily automated
Transparent to developers
« No additional activities for developers
 No footprint in development environment
Dual use:

« Resource for production software development efforts
» Research tool
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Future Work

* Disseminate techniques
— Other JPL projects

— Other NASA centers
* Funded to collaborate with GSFC SATC in FY’03

— Industry

« Extend techniques into earlier life cycle
activities
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