abstract2 Tue Oct 29 09:46:03 2002 1

Kyle C. Miller
System Engineer, MISR Project (Multi-angle Imagining Spectro-Radiometer)
Science Software Systems Group (381)

Why is building a large science software system so painful? Weren't
teams of software engineers supposed to make life easier for
scientists? Does it sometimes feel as if it would be easier to write
the million lines of code in Fortran 77 yourself? The cause of this
dissatisfaction is that many of the needs of the science customer
remain hidden in discussions with software engineers until after a
system has already been built. In fact, many of the hidden needs of
the science customer conflict with stated needs and are therefore very
difficult to meet unless they are addressed from the outset in a
system’s architectural requirements. What’s missing is the
consideration of a small set of key software properties in initial
agreements about the requirements, the design and the cost of the
system. These key software properties are somewhat unique to the
domain of scientific programming. Therefore, software engineers tend
to overlook them until it is too late to include them efficiently.
Early consideration of this set of science-critical software
properties would promote better science and prevent the prolonged
waste and frustration involved with a bad marriage between a science
team and an expensive, long-lived software system.

After a brief introduction to a concept from the realm of software
architecture known as "Reference Architectures," the set of
ingredients which are critical to science software systems will be
explained. These ingredients include properties of software such as
design visibility, operational visibility, version traceability,
planned requirements flexibility, long-term portability,
reconfigurability, output simplicity, and user modifiability.
Examples from various JPL EOS (Earth Observing System) software
projects will be used to highlight the benefits of including these
ingredients as well as the dangers encountered when they were
overlooked. The presentation will conclude with the suggestion that
such a set of key ingredients for science software should be polished
and then adopted for use as a reference by sc1entlsts and software
engineers who collaborate in the future.



Key Ingredients Needed When
Building Large Data Processing
Systems for Scientists

Kyle C. Miller

System Engineer, MISR Project
Earth Science Data Systems Sect. 381

11/4/2002 IT Symposium Miller 1
Jet Propulsion Laboratory



Contributors From EOS Projects

(Earth Observing Systems)

* AIRS: Atmospheric Infrared Sounder

— Steve Friedman, Evan Manning
* ASTER: Advanced Spaceborne Thermal Emission
and Reflection Radiometer
— Bjorn Eng
* MISR: Multi-Angle Imaging SpectroRadiometer
— Mike Smyth
* TES: Tropospheric Emission Spectrometer
— Susan Paradise, Douglas Shepard, Sirvard Akopyan

11/4/2002 IT Symposium Miller 2
Jet Propulsion Laboratory



Large Science Software

— Challenges to a Science Team

— Complexity: Millions of lines of code; many contributors.

— Performance: Constant flood of satellite data through
ambitious science algorithms on a limited budget.

— Operational Robustness: Data Production done by
External Organizations.

— Access: Public promised instant access to validated data.
— Longevity: Experiment evolves over decade(s).

— Pair Science Teams with Software Teams

— Software Team engineers a hardware/software system.

— Software Best Practices[1] are used to attack “challenges.”
— The Science Team can expend more energy on science.

11/4/2002 IT Symposium Miller 3
Jet Propulsion Laboratory



L The Problem

— Best Software Practices, while critical to
success, don’t alone handle the challenges.

— Focusing on the obvious hurdles of complexity,
performance and robustness 1n the initial design
excludes features assumed from experiences
with small science software.

— Resulting system can be too complex to
understand, too costly to modify, too difficult to
verify, too expensive to maintain, etc...

— Delays in data production and data quality
improvement equate to wasted scientific
opportunity.

11/4/2002 IT Symposium Miller 4
, Jet Propulsion Laboratory



Software Architecture

— The practice of good high-level software design.

— Rework to fix errors made at the high-level accounts for
half the money spent on software development.[2]

— Reference Architecture: A Proven Template that can be
Tailored to get a good design for a software system for
a particular domain.[3]

— JPL first-of-kind experiments defy attempts to
standardize software solutions.

— Yet, several architectural issues are common and are
critical to scientist satisfaction. Reference Ingredients?

11/4/2002 IT Symposium : Miller 5
Jet Propulsion Laboratory



L

Key Architectural Ingredients -

— Output Product Simplicity

— Version Trace-ability (in Output Products)

— Internal Operational Visibility

— Long-Term Design Clarity/Portability (vs.
Optimization)

— Targeted Investments in Flexibility

— Design Visibility (at all levels)

— Reconfigure-ability & User Modifiability

11/4/2002 IT Symposium Miller 6
Jet Propulsion Laboratory



AL

Planned Flexibility &
Output Stmplicity
e AIRS: Table-Driven IO

e Format of Products is specified in a single table.

e Parameter Names, Data Types, Data Structures, and
groupings are all defined in the table.

e Underlying Read/Write Code is Generic, and 1s
configured by this single table.

* Impact
e Cheap, quick, accurate fmt. changes and additions.

» Simplicity and Consistency of format 1s encouraged.

11/4/2002 IT Symposium Miller 7
Jet Propulsion Laboratory



=L

Planned Flexibility &
Design Clarity

 ASTER: Centralized Variable Naming

e Build command can run C Preprocessor on all
components of the system.

e Variable Names in C, Fortran, Perl, SQL and
database can be modified with one action.

 IMPACT:

e Names in all parts of the system are kept consistent
with current usage and documentation.

e Clarity increased for maintenance programmers and

scientists.
11/4/2002 IT Symposium Miller 8
Jet Propulsion Laboratory



Version Trace-ability

e MISR: Version Annotation

* Product Filename Convention includes version #.

* Software Executables are “branded’ at build-time.

— Software Version, Date, Computer Name, OS, Compiler
flags, Configuration Management system parameters.

* Software Writes Trace Info into each Product File.
— Complete Executable Info + List of all Inputs.

* Impact: Faith in Data Quality

* Users can correlate a file with a quality document.
* Lengthy validation process can be iterative.

* Data production mistakes are caught sooner.

11/4/2002 IT Symposium Miller 9
Jet Propulsion Laboratory



=L

Internal Operational Visibility

* ASTER: Intermediate Temporary Files

* Production Software always dumps data to
temporary files at each intermediate algorithm step.

* Intermediate Files can be saved for the science team
when requested.

* Impact:

* The science team may easily perform low-level
debugging/analysis without involving programmers.

* Verification of production changes occurs sooner.

11/4/2002 IT Symposium Miller 10
Jet Propulsion Laboratory



Pl
Portability vs. Optimization

* ASTER: Parallel Database Population

* Frequent database population activity took days.

* Clear, science-oriented design was left alone when
the software team addressed performance problems.

* Top-level design was modified to farm out pieces of
the task to all available computers on the network.
* Impact:

* Operations not hampered by slow database task.

* Complex optimizations limiting future hardware
options were avoided.

11/4/2002 IT Symposium | Miller 11
Jet Propulsion Laboratory



Reconfigure-ability & Portabilit |

 TES: Object Oriented Science Software

 C prototype of primary science retrieval algorithm
given to Software Team.

e Science and Software Teams collaborated to change
top-level to C++ OO design.

e Same code can be configured to run standalone for
the scientists OR in production mode with trappings.

e Production mode executable initiated by separate
OO strategy system that handles parallel data
processing plan on many small Linux systems.

11/4/2002 IT Symposium Miller 12
Jet Propulsion Laboratory



=L

Requirements Flexibility

e MISR: Reuse of OO Software for AirMISR

— Cost-prohibitive software development effort to process
Airborne validation experiment data skirted by elegant
reuse of existing Object Oriented software components.

 TES: Risky Algorithms attacked with OO

— Portions of the science code which were well-understood
in the prototype were left in traditional structured,
procedural C which scientists are comfortable with.

— Ray Tracing Component identified as most risky. Special
effort invested in developing with C++ OO model which
will be easy to change.

— Science Team appreciates OO after some initial education.

11/4/2002 | IT Symposium Miller 13
Jet Propulsion Laboratory



User Modifiability

* All Projects: Provide Sandbox Environment

* Scientists can modify algorithmic software.
* Scientists can run production software on real data.
* Ease of use varies with clarity of software design.

* Impact:

* Scientists can take over algorithm maintenance.

* The high-level design evolves in anticipation of the

requirements the science team will likely add in the
future.

11/4/2002 IT Symposium Miller 14
Jet Propulsion Laboratory



=L

Common Conclusions

— Modest software development investments
made to accommodate the unique needs of
scientists seem to reap surprisingly large
benefits.

— Costly mistakes often surround interfaces
which were 1ll-defined or which weren’t
respected.

— Methods for Visualizing and communicating a
system’s Architecture (High-level) are dearly
needed, especially in the realm of OO, which
holds so much promise for science software
otherwise.

11/4/2002 IT Symposium Miller 15
Jet Propulsion Laboratory





