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Abstract-The range of a deep space vehicle is commonly 
measured today using a sequential ranging signal that is 
transponded at the spacecraft. The noise performance and 
the uplink spectrum of this scheme are characterized here. In 
evaluating the performance, emphasis is given to the case of 
early mission phase, where parameter values are often atyp- 
ical for the mission as a whole. In particular, during early 
mission phase, sequential ranging may cause a problem for 
conical-scan tracking. 
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1. INTRODUCTION 

In the Deep Space Network (DSN), the range to a distant 
spacecraft is determined by measuring the time taken by a 
ranging signal to make one round trip to the spacecraft. The 
ground tracking station transmits an uplink carrier that has 
been phase modulated by a ranging signal. The spacecraft 
transponder demodulates the uplink carrier, filters the ranging 
signal, and modulates the phase of the downlink carrier with 
the filtered ranging signal. The downlink carrier is received 
by a ground tracking station and demodulated. The two-way 
delay of the ranging signal is determined, and this is a 
measure of the range.[ 1,2] 
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The most common ranging signal in use by the DSN is a 
sequence of periodic signals.[3] The periodic signals are 
called range code components. In the original design, the 
range code components were squarewaves, and the technique 
was called sequential squarewave ranging. Under the Net- 
work Simplification Plan for the DSN, the highest-frequency 
components are now sinewaves, and the remainder are 
squarewaves. This change is being made in order to limit the 
bandwidth of the modulated carrier. 

This paper calculates uplink spectrum and two-way perfor- 
mance when ranging with the new ranging sequences. The 
analysis given here is quite general. Special consideration 
is given to the feeding through of command signal to the 
downlink because this can affect performance during early 
mission phase. Also, the use of sequential ranging signals 
during early mission phase may sometimes lead to problems 
for conical-scan (conscan) pointing of the ground antenna. 

The paper begins with the definition of mathematical models 
for the signals. Then equations are given for the spectrum of 
the uplink carrier when modulated by ranging signal. Then 
the paper presents an approximate analysis of the two-way 
ranging performance in the presence of noise. Finally, the 
problem of conscan tracking while ranging during early 
mission phase is discussed. 

2. SIGNAL MODELS 

The highest-frequency component in sequential ranging is 
called the range clock. Its frequency, which is coherently 
related to that of the uplink carrier, determines the precision 
of the range measurement. A typical value for the range 
clock frequency is 1 MHz. Since a range clock is periodic, 
any measurement of its time delay will have ambiguity. The 
purpose of all other components is to resolve that ambiguity. 
The range clock is the first component sent during a range 
measurement. Each subsequent component has a frequency 
equal to one-half that of its immediate predecessor. The se- 
quence continues with components of ever lower frequency, 
with a halving of the component frequency (a doubling of 

mailto:pwk@eecs.cwru.edu
mailto:jeff.b.berner@jpl.nasa.gov


the component period) at each step, until acomp onent is 
reached whose period is larger than the uncertainty in the 
a priori estimate of two-way delay. For example, if the 
range clock frequency is 1 MHz, the next component has a 
frequency of 500 kHz, and this is followed by components 
with frequencies 250 kHz, 125 kHz, 62.5 kHz, etc. The 
ratio of the frequency of the range clock to that of any other 
component is always a power of 2. 

Some of the range code components have frequencies that 
make them potential interferers to the command signal, 
which shares the uplink with the ranging signal, or to the 
carrier itself. A simple expedient eliminates this interference 
problem. As the ranging sequence progresses, with a halving 
of the component frequency at each step, there comes a 
point where the component frequency is low enough to be 
a potential interferer to command or carrier. At this point, 
a new element is introduced into the signal structure. This 
new element is a composite signal equal to the product of 
the current component and a higher-frequency component. 
Beginning with this component and for each successive 
component, it is a composite signal of this type, rather than 
the pure component alone, that modulates the phase of the 
uplink carrier. This multiplication by a higher-frequency 
component is called chopping. The higher-frequency com- 
ponent is called the chopping component, and its frequency 
is called the chopping frequency. The effect of chopping 
is to shift most of the ranging code sideband power further 
away from the carrier and the command sidebands, greatly 
reducing the potential for interference. In the original se- 
quential ranging design, all components were squarewaves, 
so the chopping component was always a squarewave. Now, 
however, the chopping component will typically be sinewave. 

Figure 1 shows an example chopped range code component. 
One period T, of the composite signal, which equals one 
period of the unchopped component, is shown. In the case 
shown in this figure, the chopping component is a square- 
wave, and the chopping frequency is 4 times that of the range 
code component. 

Figure 1 :  Squarewave chopping: r ( t )  = S(w,t) . S ( 4 q . t )  

is phase modulated by command and ranging signal. 

sZl ( t )  = JZ sin [w,t + JZ~, c(t) sinw,,t + 4,  T ( t ) ]  ( 1 )  

The following symbols are used: 

wo = angular frequency of uplink carrier 
w,, = angular frequency of command subcarrier 
c(t) = command data = kl 
r(t) = ranging signal (one of the signals of Table 1)  
4,  = command modulation index, rad rms 
4, = uplink ranging modulation index, rad rms 
Table 1 shows the four possibilities for the ranging signal r( t ) .  
(The functions a(@) and P(0)  are defined in Section 4, where 
they are needed for the performance analysis.) The angular 
frequency w, is related to the period T, of the ranging signal 
by 

w, = -. (2) 
2 n  
Tl- 

The first model for r ( t )  is a squarewave. The symbol S(.) rep- 
resents a squarewave, 

S(s) = sgn [sin(z)] , (3) 
where the signum function, sgn(.), is defined by 

+1, 2 2 0  
-1, z < 0. sgn(x) = (4) 

The second model for r(t) is a sinewave. The third model 
is a squarewave chopped (multiplied) by a squarewave. The 
fourth model is a squarewave chopped by a sinewave. In 
the latter two models, in which chopping is used, the angular 
chopping frequency is mw,, where m is a power of 2, 

m = 2g, q is from the set {1,2,3,. . . ,20}. 

Table 1 :  Models for the ranging signal r ( t )  

The ranging signal r ( t ) ,  which is one of the four signals of 
Table 1 ,  is modeled such that 

$ LTr P ( t )  dt = 1. (6) 

So 4 ,  is the rms modulation index for uplink ranging. 
The uplink carrier is modeled here as a unity-power signal that 
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3. UPLINK SPECTRUM 
In this section, the uplink spectrum is only calculated when 
ranging signal alone, and no command, is present. Since 
the ranging signal has higher frequency content than the 
command signal, the effective bandwidth of the modulated 
uplink carrier is established reasonably well by considering 
only the ranging signal. A complete analysis of the uplink 
spectrum when both command and ranging signal are present 
would be considerably more involved than what appears in 
this paper. However, such an analysis would use the same 
mathematical principles outlined here. 

The spectrum of the uplink carrier will change with each new 
step in the range code sequence. It is generally necessary to 
check the spectrum at each of these steps, in order to assess 
the interference threat. 

When only ranging signal is present, the expression for uplink 
carrier, Eq. ( l ) ,  simplifies. 

(7)  s,(t) = Jz sin [wet + 4,r(t)] 

s u ( t )  = Jz cos [4,r(t)l sin w,t 

This can be expanded as 

+Jz sin [4,r(t)] COSW,~.  (8) 
Since r ( t )  is a periodic signal, the spectrum of this s,(t) 
consists only of discrete spectral lines. 

The four different models for r ( t )  are considered in separate 
subsections below. In each case, an expression is obtained for 
the power in the discrete spectral lines. For this purpose, the 
following definition is made. 

fraction of uplink total power 

with angular frequency wo + kw, 
y.1 = {  in the discrete spectral line 
pT U / L  

In the following, Pk/Ptju/L is calculated only for non- 
negative integers k.  There is a symmetric power distribu- 
tion about the carrier. So for every discrete spectral line at 
w, + kw,, it will be understood that there is also a discrete 
spectral line at w, - kw, with the same power. Po/PTIu/L 
is the carrier suppression on the uplink. The conservation of 
energy means that 

(9) 

The powers in the discrete spectral lines may be identified 
from the above as 

k = O  
k odd (11) 

k 2 2 & even. 

Sinewave: r ( t )  = Jz sin(w,t) 

The signal of Eq. (8) may be expanded with the help of the 
Jacobi-Anger identities (Appendix A). 

su(t )  = J z ~ o ( J z 4 , )  sinwot + 
00 

2 J z  C J k ( h 4 , )  cos(kw,t) . sin wot + 
k=2 
even 
co 

2 J z  J k ( h 4 r )  sin(kw,t) . C O S W , ~  (12) 
k=l 
odd 

The function J k  (.) is the Bessel function of the first kind of 
order k .  The powers in the discrete spectral lines are 

Squarewave Chopping: r ( t )  = S(w,t) . s(mw,t) 

The signal of Eq. (8) may be rewritten as 

su( t )  = Jz cos 4, sin w,t + 
s in4 , .  S(w,t) . S(mw,t) C O S W , ~ .  (14) 

S(w,t) . S(mw,t) is an even, periodic hnction of t .  It may be 
written as the Fourier cosine series (Appendix B) 

00 

S(w,t). S(mw,t) = Z C  cos(kw,t), (15) 
k = l  
odd 

where 

4 t a n  (e) ck = , kodd. 
7Tk 

The powers in the discrete spectral lines are 

Squarewave: r ( t )  = S(w,t) 

The signal of Eq. (8) may be further expanded by replacing 
S(w,t) with its Fourier sine series. 

Sinewave Chopping: r ( t )  = 

The signal of Eq. (8) may be rewritten as 

S(w,t) . sin(mw,t) 

su( t )  = Jz  COS^, sinw,t+ 
- 4  

r k  
k = l  odd 

su ( t )  = ~z cos [~z+,sin(mw,t)]  sinw,t+ Jz sin 4,  - sin(kw,t) . COSW,~.  (10) 
h sin [ h$ ,S (w , t )  sin(mw,t)] coswot. (18) 
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cos [fi#,. sin(mw,t)] is an even, periodic function o f t .  It 4. TWO-WAY PERFORMANCE 
may be written as the Fourier cosine series 

An exact analysis of two-way ranging performance would 
account for all command, ranging, telemetry, and noise 
sidebands as well as innumerable intermodulation products. 
Such an analysis is intractable. Approximations must be 
made. The approximations that are used in the two-way 
performance analysis of this section are summarized below. 

cos [ h 4 ,  sin(mu,t)] = 
03 

J o ( J i 4 , )  + 2 J n ( h d r )  cos(nmw,t). (19) 
n=2 
even 

sin [ f i4 , .S(wTt)  s i n ( w , t ) ]  is an even, periodic function of 
t with period T,.. It may be written as the Fourier cosine series 
(Appendix C) 

k=l 
odd 

where 

X,+ = z ln sin ( h 4 ,  sin my cos k y  dy. (2 1) 
iT ) 

The integral in Eq. (2 1) cannot be written in terms of elemen- 
tary functions; it must be evaluated numerically. The powers 
in the discrete spectral lines are 

Comparison of Squarewave and Sinewave Chopping 

Figures 2 and 3 plot Pk/PT/U[L in decibels as a function of 
frequency for squarewave chopping and sinewave chopping, 
respectively. In both cases, m = 128 and the carrier suppres- 
sion is -3.0 dB. (4,. is 0.785 and 0.795 rad rms for Figures 2 
and 3, respectively.) In order to better illustrate the largest 
harmonics, Figures 2 and 3 are magnified in Figures 4 and 5 
with the horizontal axes now labeled by the harmonic number 
k .  In both cases, the largest harmonics occur at k = 127 
and IC = 129. With sinewave chopping, there are also large 
“isolated” harmonics at k = 256 (w, + 2mw,) and k = 512 
(w, + 4mw,); these are terms from Eq. (19). 

In comparing Figures 2 and 3, it becomes clear why sinewave 
chopping is now preferred over squarewave chopping. With 
sinewave chopping, the power in the higher-order harmonics 
falls off much faster with increasing frequency. So the 
bandwidth of the uplink modulated carrier is significantly 
smaller with sinewave, rather than squarewave, chopping. 
From Eq. (9) and the fact that a common carrier suppression 
has been used, it is clear that the sum ETzl Pk/PT is the 
same for both of these figures. In going from Figure 2 to 
Figure 3, a lot of high-frequency power “moves” into the 
isolated harmonics k = 256 and k = 512. 

Approximations 

The function cos[Or(t)] is replaced by its average, which is de- 
noted a(@), 

The function sin[&(t)] is replaced by its lowest-order term, 
@(O)r(t). The parameter functions a(0) and @(e),  which are 
easily evaluated using trigonometry and the Jacobi-Anger 
identities, are given in Table 1. When r ( t )  = f l ,  as it does 
when r ( t )  is a squarewave or a product of squarewaves, there 
is no error in making these replacements. In the other cases 
of interest, these replacements represent the approximation 
of ignoring all higher-order terms. 

In the analysis that follows, it is necessary also to deal with 
functions of the form cos [eu(t)] and sin [Ou(t)], where u(t) 
is zero-mean, unity-variance, Gaussian noise and 6’ is a con- 
stant parameter. These functions are approximated here as 
(Appendix D) 

cos [eu(t)l e - e 2 / 2 ,  (24) 
and 

sin [ ~ u ( t ) l  N ee-e2/2  u(t) .  (25 )  

The approximations of Eqs. (24) and (25) hold only for 
0 ez 1 rad. 

Uplink 

The signal model of Eq. (1) for the (unity-power) modulated 
uplink carrier may be expanded by means of trigonometry and 
the Jacobi-Anger identities. The important terms are given be- 
low. The residual carrier is 

The fundamental command sidebands are given by 

The fundamental ranging sidebands are given by 

There are also higher-order sidebands and intermodulation 
products. These other terms are normally quite small. Fur- 
thermore, many of the intermodulation products are in phase 
quadrature to the ranging signal and so will not appear in the 
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Figure 2: Uplink spectrum with squarewave chopping; m = 128, q5r = 0.785 rad 

Figure 3: Uplink spectrum with sinewave chopping; m = 128, q5r = 0.795 rad 
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ranging channel. The higher-order terms and intermodulation 
products are ignored in the analysis of two-way performance 
appearing below. 

The important power ratios for the uplink are as follows. The 
ratio of the residual carrier to total signal power is 

-20 
n 
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The ratio of the ranging signal to total signal power is 

(27) 

1 144 

The ratio of the command (data) to total signal power is 

Figure 6 diagrams the ranging channel of the spacecraft 
transponder. The input to the transponder ranging channel 
is the modulated uplink carrier that has been downconverted 
to an intermediate frequency. The intermediate (angular) fre- 
quency is here denoted w, for convenience. (Elsewhere, of 
course, w, represents the uplink carrier radio frequency.) The 
ranging signal is detected by multiplying the input signal by a 
coherent local oscillator, cos w,t. The post-detection fil- 
ter usually has a bandwidth of 1.5 MHz so that it will pass 
a 1 MHz sinewave range clock. The power-controlled Auto- 
matic Gain Control (AGC) circuit adjusts the signal level so 
that a constant power goes to the input to the downlink phase 
modulator. 

96 3 112 
I 

Figure 4: Squarewave chopping; m = 128, q5r = 0.785 rad 

-lo r- I 
Jz cos w,t 

Figure 6: Spacecraft transponder ranging channel 

I The phase modulation of the downlink carrier due to signal 
plus noise in the ranging channel is 

$(t)  = Or ~ ( t )  + f i e c  c ( t )  sinw,,t + On u(t) ,  (29) 

where 

Or = downlink ranging modulation index, rad rms 
Oc = downlink modulation index of command, rad rms 
0, = downlink modulation index of uplink noise, rad rms 
u(t)  = unity-variance, zero-mean Gaussian random process 

The final term of Eq. (29) represents uplink noise in the 
ranging channel. The random process u(t) is unity-variance, 
zero-mean and Gaussian with a power spectral density that is 
flat out to the bandwidth of the ranging channel. 

128 
c 

144 11: 96 

Figure 5 :  Sinwave chopping; m = 128, &= 0.795 rad 
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Each of the modulation indices Or, 8, and 8, are in units of 
radians rms. They are given by 

and 

The square of the factor uu is 

8, = 8dA ' Uu.  

(33) 

where BR is the ranging channel bandwidth, and PT/NoIu/L 
is the uplink total signal power to noise spectral density ratio. 
The normalization factor A is given by 

1 
A =  

JP2(0,) J , " ( J z 4 c )  + 2Q2(4T) J,"(Jz4c)  + u; 

(34) 
The downlink ranging modulation index Bd,with units of ra- 
dians m s ,  is set by the AGC circuit in the ranging channel. 
The average of qb2(t) is 

e: + e: +e: = e;, (35) 

as it must be. Furthermore, the ranging signal to noise ratio is 

as expected. 

Downlink 

The modulated downlink carrier is modeled as a unity-power 
signal. 

Sd(t) = h sin[Gw,t -k $( t )  + o b  b ( t ) ]  (37) 

The angular frequency of the downlink carrier is Gw,, where 
G is the transponding ratio. The modulating term $( t )  
coming from the transponder ranging channel is given by 
Eq. (29). The telemetry signal b ( t )  = f l  is usually either 
binary data on a squarewave subcarrier or just binary data. 
The telemetry modulation index is o b .  

The signal model of the downlink modulated carrier may be 
expanded with the help of the approximations discussed previ- 
ously. The most important terms are given below. The resid- 
ual carrier is 

The fundamental ranging sidebands are given by 

The telemetry sidebands are given by 

ha(8 , )  Jo(d%,) e-''/2 sin(&) b ( t )  cos(Gw,t). 

The important power ratios for the downlink are as follows. 
The ratio of the residual carrier to total signal power is 

The ratio of the ranging signal to total signal power is 

The ratio of the telemetry (data) to total signal power is 

&( = a2(8,) J t ( f i 8 , )  e%in 2 ( 8 b ) .  (40) 
DIL 

Uplink noise is also modulated onto the downlink. In general, 
the presence of uplink noise feeding through to the downlink 
has two effects on performance. First, valuable downlink 
power is lost in noise sidebands and noisy intermodulation 
products. As can be seen in Eqs. (38), (39) and (40), the 
result is less available power for the residual carrier, the 
ranging sidebands, and telemetry. Second, the uplink noise 
and noisy intermodulation products are themselves a source 
of interference. In other words, these noisy terms can, in 
principle, increase the effective noise floor. This effect is 
different in the two parallel receiver channels. 

One receiver channel senses the power in the residual car- 
rier. When the downlink signal Sd( t )  is of the form given by 
Eq. (37), this channel uses a local oscillator sin(Gw,t) for de- 
tection of the residual carrier. This channel is called the in- 
phase channel because the local oscillator is in-phase with the 
residual carrier. The intermodulation product of uplink noise 
with telemetry is on this channel; it is of the form 

-ha (@, )  J o ( h S c )  8, e-':/2 sin(&) u(t)  b ( t )  sin(Gw,t). 

The power of this intermodulation product, as a fraction of the 
total downlink signal power, is given by 

*/ = a2(8,) J , " (h8 , )  8: e-': sin2(&,). (41) 
DIL 

The subscript "NI" refers to noisy sidebands on the in-phase 
channel. The approximation is made here that this noise 
power is spread evenly over the bandwidth BR. This is not 
an unreasonable approximation if the telemetry subcarrier has 
a frequency that is small compared with BR. (If the teleme- 
try subcarrier is not small compared with BR,  the approxima- 
tion is still useful, as it leads to a worst-case bound on perfor- 
mance.) With this approximation, the downlink noise floor on 
the in-phase channel is increased by a factor 
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This elevated noise floor on the in-phase channel can affect 
conical-scan (conscan) pointing of the earth antenna. This 
problem is discussed in Section 5. 

The other receiver channel demodulates telemetry and rang- 
ing signals. When the downlink signal S d ( t )  is of the 
form given by Eq. (37), this channel uses a local oscillator 
cos(Gw,t) for detection of telemetry and ranging. This chan- 
nel is called the quadrature channel because the local oscil- 
lator and residual carrier are out of phase by a quarter cycle. 
The uplink noise plus some intermodulation products involv- 
ing noise are on this channel. This noisy quadrature-channel 
power, as a fraction of the total downlink signal power,may 
be approximated by 

P.01 
pT D/L 

The subscript “NQ” refers to noisy sidebands on the quadra- 
ture channel. The first of the three terms in the bracket of 
Eq. (43) represents uplink noise sidebands. The second term 
represents the intermodulation product of uplink noise with 
ranging and telemetry sidebands. The third term represents 
the intermodulation product of uplink noise with command 
and telemetry sidebands. (There are other noisy intermodula- 
tion products, but they are typically small by comparison.) As 
with the in-phase channel, the approximation is made that this 
noise power is spread evenly over the bandwidth BR. While 
not really true, this approximation leads to a simple, worst- 
case model. With this approximation, the downlink noise 
floor on the quadrature channel is increased by a factor 

This factor is plotted in Figure 7 as a function of PT/NOID/L 
assuming uplink noise alone is in the transponder ranging 
channel (as happens when the ranging channel is “on” but 
the ranging signal has not yet arrived). Here On = e d ,  and 
8, = Bc = 0. The telemetry modulation index is taken to be 
45”, and BR is 1.5 MHz. The factor rQ is plotted for two 
different values of e d .  

The general equations governing the distribution of power 
in the downlink are Eqs. (38), (39) and (40). In a typical 
deep space scenario, the uplink noise dominates the ranging 
channel, so that en N e d  and eC << e d .  Since the Bessel 
function Jo(.) equals approximately 1 for small values of 
its argument, the Bessel functions of Eqs. (38), (39) and 
(40) are typically ignored. In other words, in a typical deep 
space scenario the command signal that feeds through the 
ranging channel has no significant effect on telemetry or 
two-way ranging performance. It is important to note here, 

Figure 7: Factor rQ; BR = 1.5 MHz, O b  = 45’ 

however,that in the early mission phase, where ranging and 
command signal, rather than uplink noise, generally dominate 
the ranging channel, the effect of command signal feeding 
through to the downlink must be taken into account in order 
to predict with accuracy the performance of both telemetry 
and two-way ranging. 

Range Measurement Error 

Downlink noise causes an error in the two-way range mea- 
surement. This is not the only error in range measurement, 
but it is an important error. A relatively simple theory exists 
for predicting this error, as seen below, and so this error can 
be controlled with the selection of appropriate integration 
times. The derivation of the range measurement error due to 
downlink noise has appeared elsewhere, for example in Refer- 
ence [4]. A terse restatement of this derivation appears below. 

Here it is assumed that the range clock is a sinewave. This is 
usually the case. 

r ( t )  = JZsinw,t (45) 

This range clock appears in the demodulator output of the 
ground receiver. It is accompanied by additive, white, Gaus- 
sian noise, which is here denoted n(t). The range clock is 
modeled with unity power, as seen in Eq. (45), so in order to 
maintain the correct signal-to-noise spectral density ratio, the 
downlink noise n(t) must be modeled with a one-sided power 
spectral density of 

-1 ( % I D , )  ’ 
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where which can be written as 

The ratio PR/PTI?/L is given by Eq. (39). PT/NoID/L is 
the total downlink signal power to noise spectral density ratio. 

The arriving range clock is subjected to two correlations oc- 
curring in parallel. The integration time of each correlation is 
Tl. In this analysis, Tl is taken to be 

TI = KTr, (47) 

where K is an integer and T,.her e denotes the period of the 
range clock. It is not necessary that Tlbe an integer mul- 
tiple of T,.. It is only that this analysis is simplified and no 
significant loss of precision occurs if the final Tl mod T,. of 
the integration is ignored. One correlation uses a reference 
squarewave having the same frequency as r ( t ) .  This corre- 
lation gives 

where T is the two-way delay. The other correlation uses a ref- 
erence squarewave that equals the previous reference square- 
wave delayed by a quarter cycle. This other correlation gives 

In the absence of noise, z is 

and y is 
2 4  9 = - sin W,T. 

?T 

Downlink noise contributes a variance to these correlation 
values. 

The two-way delay, when measured in units of T,., has a frac- 
tional part that can be estimated from 5 and y. This estimated 
(fractional) delay is 

(53) 

The variance on this measurement may be approximated by 

where fr = wr,/(2n) is the cyclical frequency of the range 
clock. The variance cl; of the range measurement, in distance 
units squared, is given by 

0; = (;)2cl; 

It is important to remember that i is a measure of the frac- 
tionalpart of the two-way delay. That is to say, in the absence 
of measurement error, 

.i = T mod T,. (57) 

The integer part of the two-way delay (7 - T mod T,.), an 
integer multiple of,T , is determined by use of the ambiguity- 
resolving components plus the a priori knowledge of the 
range. The use of the ambiguity-resolving components is 
discussed in the next subsection. 

The astute reader may suspect that a better measurement of 7 

in the presence of noise could be made if reference sinewaves 
are used instead of reference squarewaves. This is perfectly 
true. If reference sinewaves were used, the error variances of 
Eqs. (55) and (56) would be smaller by a factor 8/7r2. That 
is to say, with reference sinewaves the signal-to-noise ratio 
could be smaller by 0.9 dB and still achieve the same mea- 
surement error due to noise. The initial implementation of the 
range measurement signal processing uses the correlations 
of Eqs. (48) and (49). It would take a future enhancement of 
the signal processing, permitting sinewave correlations, to 
achieve the 0.9 dB improvement discussed in this paragraph. 

Probability of Acquisition 

The range measurement is not yet finished. There is ambigu- 
ity in the measured delay of a periodic signal. The set of all 
two-way delays that are consistent with the range measure- 
ment just made would look, if marked on a horizontal time 
axis, like a “comb” of uniformly spaced permissible values. 
The spacing between any two adjacent permissible values 
would equal the period of the range clock. The ambiguity 
is gradually resolved by a sequence of correlations against 
the ambiguity-resolving components (that is, all components 
following the range clock). But before these correlations are 
performed, the relative delay of the received ranging signal is 
reduced by .i. (This is implemented by delaying the reference 
squarewaves by ?.) After this adjustment, the new relative 
delay (T - ?)is (approximately) an integer multiple of the 
period of the range clock. The integration time for each of 
the ambiguity-resolving correlations is Tz. 
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In the discussion that follows, the parameter T, represents the 
period of the current component. As the second component 
arrives, its period T, is twice that of the range clock. The in- 
tegration time T2 is taken to be 

T2 = K’T,, (58 )  

where K’ is an integer. The fractional part of T2,wh en mea- 
sured in units of T,, can be safely ignored. The correlation 
against this component gives 

[v( t  - T ’ )  + n(t)] dt 

where the new relative delay T’ = r - i is an integer M 
multiple of the range clock period. In the absence of noise, 
the value of this correlation has one of two values. If the 
component is a squarewave or asqu arewave chopped by 
a squarewave, the noiseless correlation is either +1 (for 
an even M )  or -1 (for an odd M ) .  If the component is 
asinewav e or asqu arewave chopped by a sinewave, the 
noiseless correlation is either + 2 f i / 7 r  (for an even M )  or 
- 2 f i / 7 r  (for an odd M ) .  

If the correlation value is negative, the relative delay is 
further reduced by an amount T, /2 .  If the correlation value 
is positive, no correction is made. This has the effect of 
ensuring that the adjusted relative delay is an integer multiple 
ofthe second component. Thus, the spacing between adjacent 
possibilities in the “comb” of permissible delays has been 
doubled. (The spacing had been the range clock period, and 
now it is twice that.) 

In this way, correlation is made against one component after 
another. At the end of the sequence, the spacing between 
adjacent possibilities in the “comb” of permissible delays is 
2n-1 times the range clock period, where n is the number 
of components in the sequence. Presumably, n has been 
chosen large enough that this spacing is larger than the 
uncertainty in the a priori estimate of the two-way delay. A 
final determination of the two-way delay takes account of the 
delay corrections made for each negative correlation as well 
as the initial measured value of .i. 

It is important to consider the effect of downlink noise on this 
decision process. With each correlation there is a risk that a 
-1 or -2&/7r will appear positive in the presence of down- 
link noise. Also, a +I or +2&/7r may appear negative. The 
downlink noise contributes a variance a: to the correlation. 

If the component is a squarewave or a squarewave chopped by 
a squarewave, the probability of correctly identifying the sign 

of the correlation is 

- + - e r f ( + 2 . 3 1  1 1  ) .  (61) 
2 2  No D/L 

Similarly, if the component is a sinewave or a squarewave 
chopped by a sinewave, the probability of correctly identify- 
ing the sign of the correlation is 

1 2 2  + erf ({m) No D/L . 
(62) 

The abbreviation erf (.) is used for the error function, 

erf(y) = - exp (-t2) dt. IY 
A legitimate range measurement occurs only when the signs 
of all ambiguity-resolving component correlations are cor- 
rectly identified. Denoting the probability of correct identi- 
fication for the ith component by p i ,  where i = 2 , 3 , .  . . , n, 
the probability of acquisition of the ranging sequence is 

n 

Probability of Acquisition = p i ,  (64) 
i=2 

where n is the number of components in the sequence. Each 
pi in Eq. (64) is one of the expressions Eq. (61) or (62). If, 
at some future date, correlation with sinewave references is 
made available in the range measurement signal processing, 
then Eq. (61) would apply to all components. 

5. CONSCAN PROBLEM 

The conscan technique is used for closed-loop pointing of 
earth station antennas toward deep space vehicles.[5] When 
conscan is active, the antenna boresight is intentionally 
scanned in a repetitive, conical pattern in order to induce 
small changes in the received residual-carrier power. From 
these changes, an angular error signal may be derived. This 
error signal is the feedback signal that makes closed-loop 
control possible. For conscan to work well, an accurate 
measure of the time variation of the residual-carrier power 
is required. Since carrier power is a function of receiving 
system gain, which varies whenever gain is under automatic 
control, the receiver instead estimates the ratio of residual- 
carrier power to noise spectral density, which is independent 
of system gain. Abrupt changes in this estimated ratio are 
interpreted by the control algorithm as angular pointing 
errors. Therefore, an artificial and abrupt change in the 
estimated ratio that occurs in the absence of a pointing offset 
will confuse the conscan algorithm. It has been observed 
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that this sometimes occurs during early mission phase in the 
presence of a ranging signal. In the following paragraphs, an 
analytical explanation is offered for this phenomenon. 

As described in Section 4, there is an intermodulation prod- 
uct of uplink noise with telemetry that can increase the effec- 
tive noise floor on the in-phase downlink channel. The factor 
by which the effective noise floor is increased is PI, and it is 
given by Eq. (42). The effective value for the ratio of residual- 
carrier power to noise spectral density is 

The problem is that Pc/No l e f f  can change significantly during 
the ranging sequence, even in the absence of a pointing offset. 

During early mission phase, with the transponder ranging 
channel “on” but before the first ranging component appears 
(and assuming no command), only uplink noise is present in 
the ranging channel. The ranging channel AGC amplifies this 
uplink noise with relatively large gain and then passes this 
amplified noise along to the downlink modulator. When the 
first ranging component arrives, the ranging channel AGC 
gain decreases dramatically from what it had just been, assum- 
ing the ranging channel signal-to-noise ratio is large (as it of- 
ten is during early mission phase). Now there is essentially 
no noise (but plenty of ranging signal) modulated onto the 
downlink. The intermodulation products of uplink noise with 
telemetry now disappear. If PT/N~ ID,, is large, the effective 
noise floor suddenly decreases significantly. This means an 
abrupt change in Pc/NoIeff. (At the end of the ranging se- 
quence, when the last ranging component departs, there is an- 
other abrupt change in Pc/Nojeff.) In Eq. (65), it is the factor 
rr that changes dramatically. (Pc/PTJD,L also changes, but 
this is a small effect.) It is of interest to calculate the factor 
by which Pc/NoIeff changes as the first ranging component 
arrives. This factor is given by 

This factor is plotted in Figure 8 as a function of 
PT/NoID,L for a telemetry modulation index of 808nd 
for BR = 1.5 MHz. Two different values of e d  are shown. 
For a sufficiently large PT/No(D/L, the abrupt change in 
Pc/NoIeff is large enough to foil conscan pointing. This has 
been observed in practice. 

6. CONCLUSIONS 

This paper analyzes both the uplink spectrum and the two- 
way performance of sequential ranging with the new signal 
structure specified by the Network Simplification Plan, 
which calls for sinewaves to replace squarewaves for the 
highest-frequency components. The spectrum of the uplink 
carrier is considerably narrowed by the change to sinewaves. 

Figure 8: Change in Pc/NoI,,; BR = 1.5 MHz, = 80” 

A general analysis of two-way performance in the presence 
of noise is also given. The feeding through of command 
signals onto the downlink is incorporated in the analysis 
because this can be significant during early mission phase. 
Finally, an explanation is given for the observed problem of 
conscan tracking during sequential ranging measurements in 
early mission phase. 

APPENDIX A: JACOBI-ANGER IDENTITIES 

The expression 
cos ( y sin x) 

is an even, periodic function of x. It may therefore be ex- 
panded in a Fourier cosine series. The coefficients are Bessel 
functions of the first kind. 

W 

cos(ysins) = ~ ~ ( y )  + 2 Jk(y) cos(kz) ( ~ - 1 )  
k=2 
even 

The expression 

is an odd, periodic function of x. It may be expanded in a 
Fourier sine series. 

sin (y sin x) 

W 

sin(y sin z) = 2 Jk(y) sin(kx) (A-2) 
k=l 
odd 

These are the Jacobi-Anger identities. 
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APPENDIX B: SQUAREWAVE CHOPPING 

In this appendix, a Fourier series representation is found for 

r ( t )  = S(w,.t) . S(mw,t), (B-1) 

where m is a power of 2. The period of r ( t )  is T,. = 27r/wr, 
and r ( t )  may be written as the Fourier series 

k = - m  

where 

(B-3) dt. 

As shown below, some of the Fourier series coefficients 
vanish. For example, CO = 0 since r ( t )  has zero average. 

The integral of Eq. (B-3) is broken into two smaller integrals. 
The first, from 0 to T,./S,is further divided into m integrals, 
each corresponding to one horizontal line segment of r(t) .  
The second, from TT/2 to T,., is also divided into m integrals. 
Eq. (B-3) then becomes 

c k  = u1 - uz, ( B 4 )  

where 

and 

U2 may be put into a form like that of U1 with the two substi- 
tutions n' = n - m and t' = t - 5. Eq. (B-6) then becomes 

~2 = e--jak u I .  03-7) 

Combining Eqs. ( B 4 )  and (B-7) gives 

c k  = (1 - e - j a k )  u ~ .  (B-8) 

The Fourier coefficients vanish for even values of k ,  

c k  = 0, keven. (B-9) 

It remains to determine the Fourier coefficients for odd values 
of k.  

c k  = 2u1, k odd (B-1 0) 

The integral in Eq. (B-5) is easily evaluated. 

7rk 

Combining Eqs. (B-5), ( E l  0) and (B-11) gives 

4 sin (E) exp ( - j  2) 
c k  = X 

7Tk 
m - 1  

( - e - j a k / m ) n ,  k odd. (B-12) 
n=O 

The sum in Eq. (B-12) can be evaluated with the help of the 
identity 

m - 1  
y m  - 1 

n=O 

(B-13) 

The substitution of y = - e - j n k / m  into Eq. (B-13) gives 

For odd values of I C ,  Eq. (B-14) becomes 

m-l  (E) , k odd. (B-15) 
n=O 

Combining Eqs. (B-12) and (B-15) gives 

$tan (2) 
TIC 

c k  = , kodd. (B-16) 

From Eqs. (B-9) and (B-16) it is clear that 

c - k  = c k .  (B-17) 

Therefore the Fourier series of Eq. (B-2) may be rewritten as 
the Fourier cosine series 

m 

r ( t )  = S C  cos(27rkt/T,.), (B-18) 
k = l  
odd 

where the coefficients are given by Eq. (B-16). It is natural 
that this r ( t )  can be represented by a Fourier cosine series, 
since it possesses even symmetry. 

APPENDIX C: SINEWAVE CHOPPING 

In this appendix, a Fourier series representation is found for 

z ( t )  = sin [ h 4 , . s ( w T t )  sin(nw,t)] , (C-1) 

where m is a power of 2. z ( t )  is an even, periodic function 
o f t  with period T,. = 27r/w,.; it may be represented by the 
Fourier cosine series 

m 

z ( t )  = E& COS(kW,.t), (C-2) 
k=O 
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As shown below, some of the Fourier series coefficients 
vanish. For example, Xo = 0 since the signal average is 
zero. 

The integral of Eq. (C-3) is broken into two parts. 

X k  = % - v2, (C-4) 

where 
2 

VI = 2 1 ’ sin [&#+sin(mw,t) 1 cos(kw,t) dt, (C-5) 
T, 

and 

V2 may be put into a form like that of VI with the substitution 
t’ = t - 5. Eq. (C-6) then becomes 

VI , k even. 

Combining Eqs. (C-4) and (C-7) gives 

k odd 
= { ’2’ k even. 

When Eqs. (C-5) and (C-8) are combined and a simple 
change is made in the variable of integration, a convenient ex- 
pression is obtained. 

X,+ = 2 lr sin (&$, sin my cos ky dy,  k odd (C-9) 
7r 

Since the Fourier coefficients vanish for even k ,  the Fourier 
cosine series may be written as 

M 

z ( t )  = ~ x k c o S ( k w , t ) .  (C-10) 
k=l 
odd 

APPENDIX D: NOISE APPROXIMATIONS 

Unity-variance, zero-mean, Gaussian noise u(t)app ears in 
the following two functions: cos [0u(t)] and sin [Qu(t)]. A 
lowest-order approximation is used for each. First, cos [Bu(t)] 
is approximated by its mean 

cos [Wt)I = Y(B)l (D-1) 

Differentiating Eq. (D-2) with respect to B gives 

Integrating Eq. (D-4) by parts gives 

= - O . ~ ( B ) .  (D-5) 
Combining this differential equation with the constraint of 
Eq. (D-3) leads to the unique solution 

r(e) = e--8’/2. (D-6) 
The function sin [0u(t)], which has zero mean, is approxi- 
mated as 

This approximation is justified by two observations. First, the 
expected value of both sides of Eq. (D-7) is 0. Second, mul- 
tiplying one side of Eq. (D-7) by u(t)  and then taking the ex- 
pectation gives the same result as multiplying the other side 
by u(t)  and then taking the expectation. That is, 

(D-8) 

sin [Bu(t)] N ey(Q)u( t ) .  (D-7) 

E {usin(Bu)) = E { e y ( e ) u 2 } .  

This second observation is now demonstrated. 

E {usin(Bu)} = - u sin(0u) e-u2/2 du (D-9) 

Integrating by parts yields 

l m  ~ ( u s i n ( 0 u ) )  = 0 .  - Jz;; cos(0u) d u  

= e .r(e).  (D-10) 

Also, 

E { e y ( q u 2 }  = ~ Y ( B ) E  { u 2 }  

= oy(e). (D-11) 

A comparison of Eqs. (D-10) and (D-11) confirms that 
Eq. (D-8) is true. 
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where 

It is noted that 
$0) = 1. (D-3) 
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