
Application-Based Fault Tolerance 
for Spaceborne Applica tions 

(A Selective History of the 
Remote Exploration and Experimentation (REE) Project) 

Autonomous Robotic Vehicles Deep Space Exploration High Data Rate Instruments 

. Daniel S. Katz 
(and mahy others; see references) 

Jet Propulsion Laboratory 
California Institute of Technology 

Danie1.S. Katz@jpl.nasa.gov 

mailto:Katz@jpl.nasa.gov


REE Vision 
I . 

Background 

Funded by Office of Space Science (Code S) as part of 
NASA’s High Performance Computing and 
Communications Program 
Started in FY1996 
Funding zeroed in FY2002 

1996 Intended Outcome: REE Impact on NASA and DOD Missions by FY03 

Faster = Fly State-of-the-Art Commercial Computing Technologies within 18 
month of availability on the ground 

Better = Onboard computer operating at > 300MOPWwatt scalable to mission 
requirements (> 1 OOx Mars Pathfinder power performance) 

Cheaper = No high cost radiation hardened processors or special purpose 
architectures 
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Trends in Space to Earth Bandwidth 
“Equivalent Data Rate at Jupiter Distance” 
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Space Flight Avionics 
& Microcomputer Processor History 

Launch Year 
0 Intel 0 Motorola 680x0 0 PowerPC 0 Missions 
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REE Baseline Architecture 

Homogeneous, scalable, parallel, distributed memory embedded 
computer system 

Replicated assets as the basis for fault tolerance, graceful degradation 
Fault containment boundaries 
Maximum leverage of commercial offerings 
Scalable to mission computing requirements, mass & power limitations 
Towards a "Spacecraft as a Network of Devices" concept 

... 
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Understanding COTS Systems in a Radiation Environment 

Preliminary Fault Model Completed 
for PowerPC 750 Based Onboard Computer 

Model takes gate, register fault rates measured by testing and predicts total board- 
level faults induced by radiation in a specific environment 

Ground-based radiation testing completed for PowerPC 750 
TID > 50 KRads 

Predicted Ave Hours/Fault with 100 Mil AI shielding, nominal solar activity 

Environment Deep Space 600km-98" Surface of Mars 600km-28" 
Earth Orbit Earth Orbit 

Per Node 5 3 50 5 

We have measured Total Dose - high enough for most NASA missions 
and predicted Fault Rate - low enough to be handled by software 
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Prototyping NASA On-Board Applications 
We asked scientists: “What would you do with IOOx more 

onboard computing power?” 
I - -  

Next Generation Space Telescope - John Mather/GSFC 
Correcting the cosmic ray impacts on the CCDs 
Autonomous control and optimization of the adaptive optics 

Gamma-ray Large Area Space Telescope 
Peter Michelson/Stanford 
Toby BurnetVU Washington 

Onboard cosmic ray rejection 
Real time gamma ray burst identification 

Orbiting Thermal Imaging Spectrometer - Alan Gillespie/U Washington 
Onboard atmospheric corrections, radiance calculations 

Mars Rover Science - R. Steve Saunders/JPL 
Autonomous optimal terrain navigation 
Autonomous field geology 

Solar Terrestrial Probe Program - Steve CurtidGSFC 
Constellation/formation flying missions to probe the Sun-Earth Connection 
Onboard plasma moment calculations, multi-instrument cross correlations, 
autonomous operations 
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Science Applications on REE Testbed 
~ ~ ~ 

Milestone Metrics: 3 applications, lox throughput improvement 
(per processor) over 1999 RAD6000, sqrt(n) scalability, 50 % ideal speedup 

Applications: 
Rover Image Texture Analysis 
NGST Image Cosmic Ray Removal 
Orbiting Thermal Imaging 

Spectrometer processing 
Throughput 

Scaling, Speedup 
Exceeded metric in all cases 

Exceeded metric in all cases, 
approaching ideal limits 

Demonstrated that: 
COTS in space offers enormous 
throughput i m provemen t over 
Rad-hard Onboard science 
applications can run efficiently 
on multiple processors (demo 
to 40 procs) 

FGT vs. 1999 RAD6000 
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REE Testbed: 20 dual-processor PPC750 cards, connected via Myrinet with a custom FPGA 
communications processor, contained by two VME racks 
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Hierarchical SIFT Architecture 

Reliable *. 0. 

f 

High Throughput Parallel Application 
w/Light weigh t Fault Tolerance 

I 

/ I  I 
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Fault Injection: Texture Application 

Goal: Segment image into homogeneous regions 
Motivation: Texture contains valuable geological information 

Science Benefits: 

Igneous Metamorphic Both rocks have the same mineralogical 
content (a spectrometer would not see 
anything different), but have undergone 
distinct geological processing 

Rover can examine region it traverses 
Signal if something unusual is found 

* I  ,;< > *+ Keep running averages 

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2 

Convenient data returned Prioritization of data for novelty and 
pre-specified target classes 

Prioritization of data based on 
geological analysis of region 
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Texture Fault Injection Experiments 

One fault randomly injected into processor registers and 
memory during each execution of the application; 
No fault tolerance or fault avoidance coding techniques 

Probability of no error due to single fault - 96.8% 
Probability of crash/hang due to single fault = 0.6% 
Probability of incorrect result due to single fault - 2.6% 

0.02% r 0.006 

Bottom line: For this application, most faults have no effect 
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Fault Injection into OTIS Application 

10 HANG 0 CRASH INCORRECT 0 CORRECT INVALID] 100% 

80% 

60% 

40% 

20% 

0% 

code data heap stack QPr 

Faults Injected into Master Process 

OTIS is a masterklave application 

code data heap stack reg 

Faults Injected into Slave Process 

Overall result: SO-90% of faults have no effect 
515% of faults cause hang or crash 
<2% of faults cause data error 
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Science Applications: Built on Matrix 
Multiplication? 

(overly simplified) 

We want to make scientific applications fault tolerant 
Scientific applications often make heavy use of linear algebra, such as 
LAPACK 

Linear algebra makes use of BLAS routines 

LAPACK was designed to use BLAS3 for most of the computations 

Modern implementations of BLAS3 are built purely on Matrix 
Multiplication, Kigstrom et al. (1998), Whaley and Dongarra (1998) 

* L  
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Algorithm-Based Fault Tolerance (ABFT) 
Algorithm-Based Fault Tolerance (ABFT) - Huang and Abraham (1 984): 

Calculate C = A B, where A, 8, and Care augmented as: 

In the absence of errors: 

c* = [-)= v c  v c w  [+ v A  1.1 Bw) = [-)= v AB v ABw A*B* 

Checking vTC = vTAB and Cw = ABw allows one to detect and correct errors 

Input arrays are augmented 

arrays be used outside 

in C 

Libraries which use ABFT must either copy data to larger arrays or demand larger 

Result checking (RC) - Wasserman and &1L.lni’(1997), Prata and Silva 
(1999), Turmon et al. (2000): 

Check Cw= ABw as a post condition 
If incorrect, repeat calculation 
Initial arrays are not changed 

Library can be written as a black box, with same used interface as non-RC library 
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REE ABFT Work at JPL 

JPL in-house team, led by M. Turmon (1998-2001): 
Determined how to set numerical tolerance to separate errors caused by a fault 

Developed a general mechanism for obtaining bounds for new operations based 

Used Matlab-based testing to validate efficiency/accuracy tradeoffs of threshold 

Detect 99.9% of numerically significant faults in mat. mult., QR, LU, SVD, mat. inv., 

(A numerically significant fault is one causing a relative error of at  least one part in 1O1O 

Wrote a full set of ABFT-RC ScaLAPACK wrappers for above lin. alg. 

from those inherent in finite-precision numerical calculations 

on the operator-specific postcondition 

tests 

and FFT, with zero false alarm 

in the affected element.) 

operations, with 
C and Fortran interfaces 
Customization of system actions i etection, e.g. retry or immediate 

"Plug-in" routines - direct replacements for their ScaLAPACK counterparts which are 

"Expert" version - exposes some internal structures to allow greater application speed 

abort 

accessed simply by recompiling with new libraries 

and memory allocation control 
Wrote ABFT-RC Plapack wrappers for some lin. alg. operations 
Wrote ABFT-RC FFTW wrappers 

FALSE2002 11/14/02 DSK 15 



REE ABFT Work at U. Texas 
R. Van de Geijn et all (2000-2001) extended Abraham’s ABFT work to 
detect errors introduced into A and B 

Right-sided check Left-sided check 

Showed check of Cw= ABw is not sufficient, also need to check vTC= vTAB 
.t + 

RC (Prata and Silva, 1999) checks only Cw = ABw 
Evaluated success of error detection using each check, as well as 
overhead of doing each check 

Adopted techniques of Turmon et al. (2000) to differentiate between 
errors due to corruption and errors due to limited machine precision. 

Adopted roll-back mechanism from RC, but at a new level 
This lowers the overhead bf correclhgeakh fault 

Created a practical implementation that adds fault tolerance to a 
high-performance library 

FLARE: Formal Linear Algebra Recovery Environment 
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Implementation of Left and Right-sided 
Detection and Correction 

Where should Error Detection and Correction be applied? 
0 

0 

0 

0 

0 

0 

FALSE2002 11/14/02 

Most matrix multiplication schemes are generally divide the matrices 
at multiple levels 
High level 

Compute the entire multiply, then perform the check 

Costs less to detect an error 

- O(n2) vs. O(n3) as n is larger 
Low level 

Compute a very small part of the multiply, then perform the check 

Uses less memory 
Costs less to correct an error 
Increases frequency with which errors can be detected 

Left-sided D/C is lower-level than right-sided D/C 
At a given level, left-sided D/C is more efficient than right-sided D/C 

Take advantage of the division of the matrices at multiple levels, 
which is done primarily because of the mem,ory hierarchy of modern 
processors, for fault tolerance 

* "ib . '  
i, 
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Computer Architecture 

A 

v 

Modern computer architectures use hierarchical memory: 

few 

many 
At each level: * ' .  

less storage than next level 

faster access than next level . ,, t 1 ,  

Other computers may have different layers, but the principles are the 
same 
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A High-Performance MM Multiplication 
(ITXGEMM) 

P 
+= 

Opportunities \ 
for Adding 

Fau It-Tolerance 

Look for an 
operation like: 

L3 -kernels L2-kernels 1 L1 -kernels 

+= 
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FT Scheme Added to Only One Path 

L3 -kernels 

Fault Tolerance 
added here - \' 
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L2-kernels 1 L 1 -kernels 

+= 
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Test Results (Practice vs. Theory) 

The error detection mechanisms performed as predicted 

All significant errors introduced into A were detected by both the left- 
sided and two-sided detection methods 

All significant errors introduced into B were detected by both the 
right-sided and two-sided detection methods 

Both left- and right-sided methods detected significant errors 
introduced in either A or B, except: 

When A had columns with elements that summed to zero, the left-sided 
detection mechanism had trouble detecting errors in B 

When all columns of A summed to zero, left-sided detection could not detect 
any errors in B w, 

When B had rows with elements that summed to zero, the right-sided 
detection mechanism had trouble detecting errors in A 

When all rows of B summed to zero, right-sided detection could not detect any 
errors in A 
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FLARE Performance: Detection On1 

100 

80 

60 

40 

20 

4 
0. 

.**- 
a-. ,.e" *,.. 

'""'"'" 

.... -*-.--.@* ...... .... ..... 
4 

,._._.-.-.-e-.- """.( 

........ ..*-8--- ....... 

. . .  r, . c  

.- ITXG EM M 
...... ...... R-sided detect 
-.-.+- L-sided detect 
-+- 2-sided detect 
i '  

I I 0 
0 100 200 300 400 500 

650 

520 

390 

260 

130 

0 

Matrix size (m=n=k) 

FALSE2002 1111 4/02 DSK 23 



FLARE Performance: Detection and 
Correction (one error introduced) 
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FLARE Performance: Detection vs. 
Correction (one error introduced) 
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Example: ABFT applied to Rover Texture Analysis 

FFT and IFFT (protected by ABFT) take 60% of run time for runs with 12 filters 
Cluster (protected by reasonableness checks) takes 20%, I/O (reliable at a system level) takes lo%, 

An REE node on Mars is expected to see a fault every 50 hours 
We believe - 3% of faults could cause a error that changes data, w * -  so the average time between these 

Assuming FFT and IFFT ABFT have 98% coverage, reasonableness checks on cluster have 50% 

other code takes 10% 

events is 1700 hours 

coverage, and reliable I/O is reliable, makes the average time between errors that change data > 8000 
hours (1 1 months) 
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Lessons Learned 

Fault rates are much lower than expected 
1 per 3-4 hours per processor in low Earth Orbit 
1 per 100 hours per processor on the surface of Mars 

A low percentage of faults transition into errors for science data 
processing applications 

Depends on application 
Perhaps 1 out of 10 faults become errors on average 

> 95% for code sections covered 

Faults trigger errors in proportion to execution time 
The OS, though untested, consumes only a small percentage of the 

Application f au I t tolerance techniques have high coverage 

The rest of the system has a small cross section to faults 

execution time 

Conclusion: 
A COTS-based payload data processing system is feasible today 
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ITXGEMM vs. ATLAS 
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