
Application-Based Fault Tolerance
for Spaceborne Applica tions

(A Selective History of the
Remote Exploration and Experimentation (REE) Project)

Autonomous Robotic Vehicles Deep Space Exploration High Data Rate Instruments

. Daniel S. Katz
(and mahy others; see references)

Jet Propulsion Laboratory
California Institute of Technology

Danie1.S. Katz@jpl.nasa.gov

mailto:Katz@jpl.nasa.gov

REE Vision
I .

Background

Funded by Office of Space Science (Code S) as part of
NASA’s High Performance Computing and
Communications Program
Started in FY1996
Funding zeroed in FY2002

1996 Intended Outcome: REE Impact on NASA and DOD Missions by FY03

Faster = Fly State-of-the-Art Commercial Computing Technologies within 18
month of availability on the ground

Better = Onboard computer operating at > 300MOPWwatt scalable to mission
requirements (> 1 OOx Mars Pathfinder power performance)

Cheaper = No high cost radiation hardened processors or special purpose
architectures

FALSE2002 11/14/02 DSK 2

Trends in Space to Earth Bandwidth
“Equivalent Data Rate at Jupiter Distance”

DSK 3

Space Flight Avionics
& Microcomputer Processor History

Launch Year
0 Intel 0 Motorola 680x0 0 PowerPC 0 Missions

FALSE2002 11/14/02 DSK 4

REE Baseline Architecture

Homogeneous, scalable, parallel, distributed memory embedded
computer system

Replicated assets as the basis for fault tolerance, graceful degradation
Fault containment boundaries
Maximum leverage of commercial offerings
Scalable to mission computing requirements, mass & power limitations
Towards a "Spacecraft as a Network of Devices" concept

...

/ d Microcontrollers

Single Board
Computer

Single Board
Computer

..... I I......... T..""""L (1 SingleBoard ! i
i Computer f
i..." ..-.. "" ...pa-- ..̂ ""̂ ^̂ ".,

............... 1 I,
Single Board I ! computer I

i.".."""""."""""""" "-".."".."""-.J

...

FALSE2002 1 1 I1 4/02 DSK 5

Understanding COTS Systems in a Radiation Environment

Preliminary Fault Model Completed
for PowerPC 750 Based Onboard Computer

Model takes gate, register fault rates measured by testing and predicts total board-
level faults induced by radiation in a specific environment

Ground-based radiation testing completed for PowerPC 750
TID > 50 KRads

Predicted Ave Hours/Fault with 100 Mil AI shielding, nominal solar activity

Environment Deep Space 600km-98" Surface of Mars 600km-28"
Earth Orbit Earth Orbit

Per Node 5 3 50 5

We have measured Total Dose - high enough for most NASA missions
and predicted Fault Rate - low enough to be handled by software

FALSE2002 11/14/02 DSK 6

Prototyping NASA On-Board Applications
We asked scientists: “What would you do with IOOx more

onboard computing power?”
I - -

Next Generation Space Telescope - John Mather/GSFC
Correcting the cosmic ray impacts on the CCDs
Autonomous control and optimization of the adaptive optics

Gamma-ray Large Area Space Telescope
Peter Michelson/Stanford
Toby BurnetVU Washington

Onboard cosmic ray rejection
Real time gamma ray burst identification

Orbiting Thermal Imaging Spectrometer - Alan Gillespie/U Washington
Onboard atmospheric corrections, radiance calculations

Mars Rover Science - R. Steve Saunders/JPL
Autonomous optimal terrain navigation
Autonomous field geology

Solar Terrestrial Probe Program - Steve CurtidGSFC
Constellation/formation flying missions to probe the Sun-Earth Connection
Onboard plasma moment calculations, multi-instrument cross correlations,
autonomous operations

FALSE2002 11/14/02 DSK 7

Science Applications on REE Testbed
~ ~ ~

Milestone Metrics: 3 applications, lox throughput improvement
(per processor) over 1999 RAD6000, sqrt(n) scalability, 50 % ideal speedup

Applications:
Rover Image Texture Analysis
NGST Image Cosmic Ray Removal
Orbiting Thermal Imaging

Spectrometer processing
Throughput

Scaling, Speedup
Exceeded metric in all cases

Exceeded metric in all cases,
approaching ideal limits

Demonstrated that:
COTS in space offers enormous
throughput i m provemen t over
Rad-hard Onboard science
applications can run efficiently
on multiple processors (demo
to 40 procs)

FGT vs. 1999 RAD6000

70.0

60.0

50.0
Y
m
Ip
Y
L

c
Y
3
L

u 40.0
0-

30.0
L :
20.0

10.0

0.0

Rover texture-segmentation H NGST cr-remove 0 OTIS1

REE Testbed: 20 dual-processor PPC750 cards, connected via Myrinet with a custom FPGA
communications processor, contained by two VME racks

FALSE2002 11/14/02 DSK 0

Hierarchical SIFT Architecture

Reliable *. 0.

f

High Throughput Parallel Application
w/Light weigh t Fault Tolerance

I

/ I I

FALSE2002 11/14/02 DSK 9

Fault Injection: Texture Application

Goal: Segment image into homogeneous regions
Motivation: Texture contains valuable geological information

Science Benefits:

Igneous Metamorphic Both rocks have the same mineralogical
content (a spectrometer would not see
anything different), but have undergone
distinct geological processing

Rover can examine region it traverses
Signal if something unusual is found

* I ,;< > *+ Keep running averages

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2

Convenient data returned Prioritization of data for novelty and
pre-specified target classes

Prioritization of data based on
geological analysis of region

FALSE2002 11/14/02 DSK 10

Texture Fault Injection Experiments

One fault randomly injected into processor registers and
memory during each execution of the application;
No fault tolerance or fault avoidance coding techniques

Probability of no error due to single fault - 96.8%
Probability of crash/hang due to single fault = 0.6%
Probability of incorrect result due to single fault - 2.6%

0.02% r 0.006

Bottom line: For this application, most faults have no effect
FALSE2002 11/14/02 DSK 11

Fault Injection into OTIS Application

10 HANG 0 CRASH INCORRECT 0 CORRECT INVALID] 100%

80%

60%

40%

20%

0%

code data heap stack QPr

Faults Injected into Master Process

OTIS is a masterklave application

code data heap stack reg

Faults Injected into Slave Process

Overall result: SO-90% of faults have no effect
515% of faults cause hang or crash
<2% of faults cause data error

FALSE2002 11/14/02 DSK 12

Science Applications: Built on Matrix
Multiplication?

(overly simplified)

We want to make scientific applications fault tolerant
Scientific applications often make heavy use of linear algebra, such as
LAPACK

Linear algebra makes use of BLAS routines

LAPACK was designed to use BLAS3 for most of the computations

Modern implementations of BLAS3 are built purely on Matrix
Multiplication, Kigstrom et al. (1998), Whaley and Dongarra (1998)

* L

FALSE2002 11/14/02 DSK 13

Algorithm-Based Fault Tolerance (ABFT)
Algorithm-Based Fault Tolerance (ABFT) - Huang and Abraham (1 984):

Calculate C = A B, where A, 8, and Care augmented as:

In the absence of errors:

c* = [-)= v c v c w [+ v A 1.1 Bw) = [-)= v AB v ABw A*B*

Checking vTC = vTAB and Cw = ABw allows one to detect and correct errors

Input arrays are augmented

arrays be used outside

in C

Libraries which use ABFT must either copy data to larger arrays or demand larger

Result checking (RC) - Wasserman and &1L.lni’(1997), Prata and Silva
(1999), Turmon et al. (2000):

Check Cw= ABw as a post condition
If incorrect, repeat calculation
Initial arrays are not changed

Library can be written as a black box, with same used interface as non-RC library

FALSE2002 1 1 I1 4/02 DSK 14

REE ABFT Work at JPL

JPL in-house team, led by M. Turmon (1998-2001):
Determined how to set numerical tolerance to separate errors caused by a fault

Developed a general mechanism for obtaining bounds for new operations based

Used Matlab-based testing to validate efficiency/accuracy tradeoffs of threshold

Detect 99.9% of numerically significant faults in mat. mult., QR, LU, SVD, mat. inv.,

(A numerically significant fault is one causing a relative error of at least one part in 1O1O

Wrote a full set of ABFT-RC ScaLAPACK wrappers for above lin. alg.

from those inherent in finite-precision numerical calculations

on the operator-specific postcondition

tests

and FFT, with zero false alarm

in the affected element.)

operations, with
C and Fortran interfaces
Customization of system actions i etection, e.g. retry or immediate

"Plug-in" routines - direct replacements for their ScaLAPACK counterparts which are

"Expert" version - exposes some internal structures to allow greater application speed

abort

accessed simply by recompiling with new libraries

and memory allocation control
Wrote ABFT-RC Plapack wrappers for some lin. alg. operations
Wrote ABFT-RC FFTW wrappers

FALSE2002 11/14/02 DSK 15

REE ABFT Work at U. Texas
R. Van de Geijn et all (2000-2001) extended Abraham’s ABFT work to
detect errors introduced into A and B

Right-sided check Left-sided check

Showed check of Cw= ABw is not sufficient, also need to check vTC= vTAB
.t +

RC (Prata and Silva, 1999) checks only Cw = ABw
Evaluated success of error detection using each check, as well as
overhead of doing each check

Adopted techniques of Turmon et al. (2000) to differentiate between
errors due to corruption and errors due to limited machine precision.

Adopted roll-back mechanism from RC, but at a new level
This lowers the overhead bf correclhgeakh fault

Created a practical implementation that adds fault tolerance to a
high-performance library

FLARE: Formal Linear Algebra Recovery Environment

FALSE2002 1 1 /I 4/02 DSK 16

Implementation of Left and Right-sided
Detection and Correction

Where should Error Detection and Correction be applied?
0

0

0

0

0

0

FALSE2002 11/14/02

Most matrix multiplication schemes are generally divide the matrices
at multiple levels
High level

Compute the entire multiply, then perform the check

Costs less to detect an error

- O(n2) vs. O(n3) as n is larger
Low level

Compute a very small part of the multiply, then perform the check

Uses less memory
Costs less to correct an error
Increases frequency with which errors can be detected

Left-sided D/C is lower-level than right-sided D/C
At a given level, left-sided D/C is more efficient than right-sided D/C

Take advantage of the division of the matrices at multiple levels,
which is done primarily because of the mem,ory hierarchy of modern
processors, for fault tolerance

* "ib . '
i,

DSK 17

Computer Architecture

A

v

Modern computer architectures use hierarchical memory:

few

many
At each level: * ' .

less storage than next level

faster access than next level . ,, t 1 ,

Other computers may have different layers, but the principles are the
same

FALSE2002 11/14/02 DSK 18

A High-Performance MM Multiplication
(ITXGEMM)

P
+=

Opportunities \
for Adding

Fau It-Tolerance

Look for an
operation like:

L3 -kernels L2-kernels 1 L1 -kernels

+=

FALSE2002 1111 4/02 DSK 19

FT Scheme Added to Only One Path

L3 -kernels

Fault Tolerance
added here - \'

FALSE2002 11/14/02

L2-kernels 1 L 1 -kernels

+=

DSK 20

L

0

.
I

C
I

E! c CI .I

z C
I

S

0

e

P
)

C

Q

0

rc C

0

v
)

0

Q
)

.
I

.
I

C
I

.
I

.
I

k

d,
E

 3
0

m
W

W

W

- 0

Q
)

tn
0

0

Q
)

tn

P 0

c
,

Q

Q
)

Q

'EJ
S

Q

P

E E! t c, S Q
)

v
)

S

.- E c, Q

v
)

I

L

E! t 9 a E! = 'EJ
S

v
)

.- c, .- i! a W
i

v
)

v
)

Q

Q
)

0

Q
)

Q
)

W

v
)

C
I

C
I

.- L E! f i! Q

v
)

u
,
@

s
o

.
I

0
7

.

-
4

o

3
 .E

Q
)m

c

c
l
c

.
I

h

c
 CI
O
n

.
I

m

a II

c

0

Q

Q
)

0

5
rc

m
 Q
)

0

Q
)

C

C
I

m
v

.
I

v
)

3

Q

.
I

C
I
- rc

N

0

0

N

W

Y 3

Test Results (Practice vs. Theory)

The error detection mechanisms performed as predicted

All significant errors introduced into A were detected by both the left-
sided and two-sided detection methods

All significant errors introduced into B were detected by both the
right-sided and two-sided detection methods

Both left- and right-sided methods detected significant errors
introduced in either A or B, except:

When A had columns with elements that summed to zero, the left-sided
detection mechanism had trouble detecting errors in B

When all columns of A summed to zero, left-sided detection could not detect
any errors in B w,

When B had rows with elements that summed to zero, the right-sided
detection mechanism had trouble detecting errors in A

When all rows of B summed to zero, right-sided detection could not detect any
errors in A

FALSE2002 1111 4/02 DSK 22

FLARE Performance: Detection On1

100

80

60

40

20

4
0.

.**-
a-. ,.e" *,..

'""'"'"

.... -*-.--.@*
4

,._._.-.-.-e-.- """.(

........ ..*-8---

. . . r, . c

.- ITXG EM M
...... R-sided detect
-.-.+- L-sided detect
-+- 2-sided detect
i '

I I 0
0 100 200 300 400 500

650

520

390

260

130

0

Matrix size (m=n=k)

FALSE2002 1111 4/02 DSK 23

FLARE Performance: Detection and
Correction (one error introduced)

100

80

60

40

20

&&::::::*At-*.. e.. 6
I

7 ,*_._._.-. +-.-"""'
.......... E::: 8

* ITXGtEMM

...... 2-sided correct
0'
0 100 200 300 400 500

650

520

390

260

130

0

Matrix size (m=n=k)

FALSE2002 1111 4/02 DSK 24

FLARE Performance: Detection vs.
Correction (one error introduced)

Y
cd
a,
Q

0
S
a,
0

Q

w--

.c,

z

100

80

60

40

20

0

Jj
.*..** .’* g;/’

I.-.- ._._.

/
,........-..;...@-.-.-.-.-.I 4
.-.-.-

7 650 41 520

,._.-. -.-. .*&.::::*::::

390

260

~

L-sided correct I -.-. 0 .-.-

130

- v
0 100 200 300 400 500

Matrix size (m=n=k)

FALSE2002 11/14/02 DSK 25

Example: ABFT applied to Rover Texture Analysis

FFT and IFFT (protected by ABFT) take 60% of run time for runs with 12 filters
Cluster (protected by reasonableness checks) takes 20%, I/O (reliable at a system level) takes lo%,

An REE node on Mars is expected to see a fault every 50 hours
We believe - 3% of faults could cause a error that changes data, w * - so the average time between these

Assuming FFT and IFFT ABFT have 98% coverage, reasonableness checks on cluster have 50%

other code takes 10%

events is 1700 hours

coverage, and reliable I/O is reliable, makes the average time between errors that change data > 8000
hours (1 1 months)

FALSE2002 11/14/02 DSK 26

Lessons Learned

Fault rates are much lower than expected
1 per 3-4 hours per processor in low Earth Orbit
1 per 100 hours per processor on the surface of Mars

A low percentage of faults transition into errors for science data
processing applications

Depends on application
Perhaps 1 out of 10 faults become errors on average

> 95% for code sections covered

Faults trigger errors in proportion to execution time
The OS, though untested, consumes only a small percentage of the

Application f au I t tolerance techniques have high coverage

The rest of the system has a small cross section to faults

execution time

Conclusion:
A COTS-based payload data processing system is feasible today

FALSE2002 11/14/02 DSK 27

References

Beahan, J., L. Edmonds, R. Ferraro, A. Johnston, D. S. Katz, and R. R. Some, “Detailed
Radiation Fault Modeling of the Remote Exploration and Experimentation (REE) First
Generation Testbed Architecture,” 2000 IEEE Aerospace Conference, 2000

Castafio, R. L., T. Mann, and E. Mjolsness, “Texture Analysis for Mars Rover Images,”
Applications of Digital Image Processing XXII, SPlE Vol. 3808, 1999

Chen, F., L. Craymer, J. Deifik, A. J. Fogel, D. S. Katz, A. G. Silliman, Jr, R. R. Some, S. A.
Upchurch, and K. Whisnant, “Demonstration of the Remote Exploration and Experimentation
(REE) Fault-Tolerant Parallel-Processing Supercomputer for Spacecraft Onboard Scientific
Data Processing,” International Conference on Dependable Systems and Networks, 2000.

Gunnels, J. A., D. S. Katz, E. S. Quintana-Orti, and R. A. van de Geijn, “Fault-Tolerant High-
Performance Matrix Multiplication: Theory and Practice,” International Conference on
Dependable Systems and Networks, 2001

Images,” IEEE Aerospace Conference, 2002
Gustafson, W. and A. Gillespie, “Onboard Processing of Orbital Hyperspectral Thermal Infrared

Some, R. R., W. S. Kim, G. Khanoyan, L. Callum, A. Agrawal, J. J. Beahan, A. Shamilian, and A.
Nikora, “Fault Injection Experiment Results in Spaceborne Parallel Application Programs,”
IEEE Aerospace Conference, 2002

Performance Space Applications,’’ International Conference on Dependable Systems and
Networks, 2000

Turmon, M., R. Granat, and D. S. Katz, ‘Software-Implemented Fault Detection for High-

FALSE2002 11/14/02 DSK 20

ITXGEMM vs. ATLAS

100

80

60

40

20

Detection only (no error introduced)

- ITXGEMM - ATLAS
* - Wsided detect
--$- L-sided detect
++- 2-sided detect

0
0 100 200 300 400 500

Matrix size (m=n=k)

FALSE2002 11/14/02 DSK 29

