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Abstract-VML (Virtual Machine Language) is an advanced 
procedural sequencing language which simplifies spacecraft 
operations, minimizes uplink product size, and allows 
autonomous operations aboard a mission without the 
development of autonomous flight software. VML is used 
on Mars Odyssey and Space Infrared Telescope Facility, and 
is slated for use on Mars Reconnaissance Orbiter. The 
language is a mission-independent, high level, human 
readable script. It features a rich set of data types (including 
integers, doubles, and strings), named functions, parameters 
to functions, IF and WHILE control structures, 
polymorphism, and on-the-fly creation of spacecraft 
commands from calculated values. 

The ground component of VML consists of a mission- 
independent compiler, a data-driven command generator, 
and an execution tool, all of which run under Unix. The 
compiler translates human readable source to a binary 
format. The data-driven command generator translates 
mission-specific spacecraft commands for the compiler from 
human-readble text to binary. The offline sequence 
execution tool runs sequences at speeds several thousand 
times real-time, and provides debugging features, integrated 
reports, and interactive execution options. These tools allow 
iterative development of sequences with a turnaround time 
of seconds rather than the hours or days typical with full-up 
lab testing. 

Parameterization and use of reusable functions called blocks 
onboard the spacecraft has several advantages over ground 
expanded sequences. Mission safety is enhanced, since 
blocks receive more scrutiny up front during development. 
Development of sequences is simplified, since blocks 
provide a rich set of behaviors that can be invoked. The 
review and test process for the invoking sequences is 
simplified, since the behavior of the blocks is well 
understood. Mission costs for autonomy are reduced, since 
responses to conditions are coded into blocks and upgraded 
without changing flight software. Uplink load is reduced, 
since the blocks physically reside onboard the spacecraft. 

VML use on Mars Odyssey and the Space Infrared 
Telescope Facility (SIRTF) has allowed spacecraft 
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operations teams to place autonomy aboard deep space 
missions. For instance, the Mars Odyssey team developed 
VML blocks which could react to autonomously detected 
unexpected blooming of the Martian atmosphere during 
aerobraking end-game to raise the spacecraft orbit to a safe 
altitude, without ground intervention. SIRTF is using VML 
functionality to gather more data during the mission by 
detecting when the facility has settled after a slew, rather 
than using worst-case settling times. SIRTF also uses VML 
to dynamically build spacecraft commands, dramatically 
reducing the size of uplink products and allowing the 
mission to live within its communications allocation. 

This paper discusses techniques for parameterizing routine 
operations using onboard blocks. The relationship between 
one-use sequences and reusable blocks is discussed. 
Reduced development effort due to iterative block 
development is outlined. The ability to migrate to the 
spacecraft functionality which is more traditionally 
implemented on the ground is examined. The implications 
for implementing spacecraft autonomy without the need for 
expensive flight software agent development is also 
discussed. 
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VML SEQUENCING MODEL AND CAPABILITIES 

1. INTRODUCTION: SEQUENCING 

Deep space missions require some means for performing 
commands on a timed basis. The execution of timed 
spacecraft commands is known as sequencing [ 11. 

Sequences are typically represented in a planning interface 
within the ground system, translated to an uplinkable form, 
radiated to the spacecraft, loaded by some means, then 
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executed. Sequence execution results in the issuance of 
commands to the spacecraft in some timed order. 

Modern spacecraft with real-time operating systems and 
preemptive task scheduling implement sequencing as a 
software component. The features implemented in the 
generic flight software sequencing capabilities profoundly 
affect the complexity of operating the spacecraft, the size of 
the team necessary implement sequences, the operations able 
to be undertaken, the frequency of uplink, and the size of 
uplinked products. Virtual Machine Language (VML) 
sequencing carries a number of distinct advantages over 
more traditional sequencing architectures, in both capability, 
personnel time, and cost. 

This paper provides a brief overview of VML components 
presented in an earlier paper [ 2 ] .  It then goes on to present 
techniques for simplifying operations and minimizing 
uplink size made possible by VML capabilities. Examples 
of these techniques are given for the Mars Odyssey and 
Space Infrared Telescope Facility (SIRTF) missions 

2. VML SEQUENCING MODEL AND CAPABILITIES 

The VML Flight Component (part of the flight software) 
follows a paradigm called procedural sequencing. At any 
particular time, exactly one instruction is considered to be 
"next" on a sequence engine. This allows named sequences 
which can be called using parameters, easy creation and 
evaluation of logic constructs, and an implicit ability to 
branch and loop. Parallelism is achieved by instantiating a 
fixed number of sequence engines, and explicitly loading 
and running sequences as threads on those engines. These 
kind of sequence engines are called virtual machines. They 
resemble a CPU which can interpret instructions, with 
memory, dynamic data storage implemented as a stack, and 
an instruction pointer (see Figure 2-1). Some number of 
machines are instantiated for the mission. These machines 
limit the number of threads of execution which can operate 
in parallel. 
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Figure 2-1 : Virtual machine sequence engines 

Each engine is used for two distinct purposes: storing 
sequences, and executing sequences. When a file containing 
a VML module is loaded into an engine, the named 

sequences (called Jirnctions) within that module become 
available for running on any engine. They are invoked by 
name rather than in index. In some cases, the function is 
executed on the same engine in which it is stored. In other 
cases, the function is executed on a different engine than the 
one in which it is stored, as shown in Figure 2.2. This 
would be the case for a function calling another function in 
a library stored on a different engine. 
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Figure 2-2: Function on engine x running library routine 
stored on different engine 

The VML flight component runs as an embedded task under 
VxWorks or a similar real-time operating system within the 
flight software. It works in concert with the rest of flight 
software, dispatching commands to other flight software 
tasks in order to affect changes to the spacecraft behavior. 
The flight component has been developed in a manner 
compatible with JPL Category A SEI level 3code, with 
appropriate methodology, documentation, review, and 
testing. It is available for use on any NASA mission under 
license from JPL. 

The user creates functions as text using a text editor, or a 
front-end generating tool. The text is translated by the VML 
compiler according to generic VML constructs and mission- 
specific definition files for allowed global variable names 
and constants. It is then translated to a binary form 
compatible with the VML Flight Component. Discussion 
of the VML constructs is presented in their human-readable 
form here, rather than in binary form. 

The procedural orientation of virtual machines allows 
sequences to be expressed using a number of high-level 



language constructs. These constructs form a simple but 
powerful scripting language in which users can express 
desired spacecraft activities using named functions, with 
parameters, a variety of data types, and a rich set of 
operators. 

Comments 

Comments within VML code start with a semicolon (; ) and 
continue with all characters until the end of the line is 
encountered. Comments are sprinkled throughout examples 
in the following sections. 

Modules 

A module is a container for one or more functions, along 
with optional persistent storage. It is bounded by MODULE 
and END-MODULE keywords. 

Modules partition the functionality of the problem space 
into manageable chunks. For instance, a library module may 
contain several reusable blocks for controlling instruments 
and performing communications activities. A daily absolute 
sequence may reside as the only function in another module, 
since it is changed out with regularity. 

One module exists per file input to the VML compiler. This 
same module is defined in a flight-compatible format in the 
VML compiler output file. 

Functions: Blocks, Relative Sequences, Absolute Sequences 

Function is the generic term for a sequence containing 
absolute and/or relative time tags. A function is an amed 
executable chunk of VML which may accept parameters and 
define local variables. Functions may also return values to a 
calling function. A function starts with the keywords 
BLOCK or RELATIVE-SEQUENCE for relatively time 
tagged instructions, and starts with SEQUENCE or 
ABSOLUTE-SEQUENCE for instructions containing one 
or more absolute time tags. 

A block is afu nction that is intended to be reused (and 
frequently is stored onboard the spacecraft). Blocks contain 
only relative time tags so that when they are executed none 
of the statements are late. 

A function that contains only relative time tags between its 
statements and is not intended for multiple uses is called a 
relative sequence. Relative sequences contain only relative 
time tags so that they may be kicked off at any time 
without being late. Relative sequences are frequently 
autogenerated by ground-based tools for activities like 
aerobraking maneuvers or daily operations which are 
planning dependent. 

The instructions in a function are bounded between the 
keywords BODY and END-BODY. The body of the 
function appears after all parameters, flags, and local 
variable declarations. A function returns the value 
UNKNOWN when it encounters the END-BODY. A 
function retums aspe cified value when it encounters any 
embedded RETURN statements. 

Parameters 

Parameter values are specified immediately after the function 
declaration as a series of zero or more INPUT or 
INPUT-OUTPUT keywords, each of which is followed by a 
locally scoped name. INPUT values are copies of values. 
"PUT-OUTPUT values reference a variable provided in the 
call and can return values. Example code is given below. 

BLOCK acquire-star 
INPVT ra ;right ascencion 
INPUT dec ;declination 
INPUT file 
INPUT acpfailure-delay 
INPUT-OUTPUT slew-time-result 

Flags 

Flags impose special behavior on afu nction. At present, 
only two flags exist: AUTOEXECUTE, which causes the 
function to automatically begin execution after loading, and 
AUTOUNLOAD, which causes the module the function is 
part of to be unloaded when the function completes 
execution. Flags appear immediately after the function's 
parameters, but functions with flags typically don't have 
parameters. 

BLOCK deploy-antenna 
FLAGS AUTOEXECUTE AUTOUNLOAD 

Variables 

Several different scopes of variables exist in VML 
sequencing: local, module, and global. 

Local variables are defined within functions, and are not 
visible by name outside the function. Each instance of an 
executing function contains fresh copies of its local 
variables. The local variables appear immediately after the 
parameter list and any flags in a function. 

BLOCK acquire-star 
INPUT ra ;right ascencion 
INPUT dec ;declination 
INPUT file 
INPUT acpfailure-delay 
INPUT-OUTPUT slew-time-result 

DECLARE INT actual-acpseconds 
DECLARE DOUBLE slew-time 

Module level variables are visible by name to all functions 
defined in the module, and have persistent data values until 
the module is unloaded from the engine. 

Global level variables are visible by name to all functions, 
and to flight software. Storage in global variables is 
persistent. Global variables are used for event-driven 
sequencing, allowing sequences to respond to environmental 
changes in the spacecraft. 

Variable types include integer, unsigned integer, floating 
point double, logical, time, and string. Variables may be 
assigned regardless of type: all assignments of different 
types result in meaningful values to the assignee. This 
runtime flexibility removes many constraints with which 
operators would otherwise have to deal, and results in less 
complicated sequences. 



Time 

Time may be specified in several formats: as absolute (wall- 
clock time), spacecraft time in seconds, and relative time in 
hour/minute/second form. Each instruction has a time tag 
which acts as a delay between its execution and the 
completion of the previous instruction. 

Mathematical operations on time are available for 
calculating delay values needed in DELAY-BY and 
DELAY-UNTIL statements. DELAY-BY implements a 
relative time delay for a specified number of seconds. 
DELAY-UNTIL implements a delay until the given time 
has come to pass. DELAY-UNTIL is useful for inserting 
parameterized absolute time into a relatively time function. 

spacecraft commands 

Spacecraft commands are issued by the sequence as either 
constant commands, or as dynamically built commands. 

Constant commands are seen by the flight component as 
binary patterns to be forwarded without change to the 
command processing flight software. In the human-readable 
VML file, commands in auntr anslated form are specified 
using the ISSUE keyword, which causes all characters to the 
end of the line to be passed to a mission-specific translation 
tool for embedding the corresponding binary in the uplink 
product. 

Commands may be built on the fly by the VML flight 
component based on parameter and variable values. Any 
command defined in the system that can be interpreted by 
the flight software can be built with a special external call 
"issue-cmd". Dynamically built commands values are 
validated according to the same rules built into the ground 
system, thereby protecting the spacecraft from 
miscalculations. Invalid command parameter values result in 
acommand error and will abort a thread of execution if 
aborts are enabled. 

Operators 

A wide variety of operators is available in VML. Arithmetic 
operators include absolute value, negation, addition, 
subtraction, multiplication, division, modulo, and power. 
Bitwise operators include and, or, exclusive or, invert, shift 
left, and shift right. Logical operators include and, or, 
exclusive or, and not. String operators include length, split 
left (returns substring from start of string up to and 
including given character position), and split right (trailing 
substring starting at given character position). 

The most complex expression is one including a binary 
operator, e.g. 

Expressions with precedence may be incorporated on a 
future mission. 

R00:OO:OO.l max := 15.5 + try 

Conditionals 

VML includes an IF construct which can be used for 
choosing a code path based on variable values. This 
selection allows logical evaluation of multiple conditions 

using ELSE-IF and ELSE statements. The IF construct is 
particularly useful for reacting to parameter values passed 
into a function, calculated local variables, and global 
variable values. 

R00:OO:OO.l IF acq = -1 THEN 
R00:OO:OO.l C W  record-failure tries, ra, dec 
R00:OO:OO.O DELAY-BY acpfailure-delay 
R00:OO:OO.O 
R00:OO:OO.O DELAY-BY 11.5 
R00:OO:OO.O ELSE 
R00:00:00.1 slew-time-result := SPACECRAFT-TIME 
R00:OO:OO.O END-IF 

ELSE-IF acq = 0 THEN 

R00:OO:OO.l IF mode = "high-speed" THEN 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O ELSE-IF mode = "mga-800" THEN 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O ELSE IF mode = "maa 100" THEN - - -  
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O ELSE 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O END-IF 

Loops 

A WHILE loop is available for structured conditional 
looping. This construct can be used to repeat a set of 
statements until a condition becomes TRUE or FALSE. 
This construct also allows repeating a set of statements a 
specific number of times using a counting variable. 

R00:OO:OO.l i := 1 
R00:OO:OO.l WHILE i <= 10 DO 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l 
R00:OO:OO.O END-IF 

i : = i + l  

Event-driven Sequencing 

The WAIT and TEST-AND-SET statements are used to 
detect events represented by global variables. 

The WAIT statement suspends operation of the function 
until its condition is met, then resumes execution of the 
function at the next instruction. This instruction is 
particularly useful for non-deterministic sequences which are 
related to real-time events : rather than assuming worst-case 
timing, the sequence can be designed to execute with a 
minimum of wasted time. 

A variety of WAIT statement constructs exists. The 
simplest waits for a new value to arrive in a global variable 
before proceeding. Condition checking can be applied if 
desired. In addition, the statement can wait until a value 
arrives which is different than the value of the variable at the 
start of the statement. An optional timeout to bound the 
worst-case behavior of the statement is available. 

R00:OO:OO.l v := WAIT gv-a 
R00:OO:OO.l v := WAIT gv-a > 4 
ROO:O0:00.1 v := WAIT-CHACE gv-a 

R00:OO:OO.l v := WAIT gv-a > 4 TIMEOUT R00:Ol:OO.O 

Because the continuation from the WAIT statement can 
depend on the value received, and because a wide variety of 
values could result in proceeding from aW AIT statement, 



the value of the global variable which resulted in 
completion of the WAIT is retumed for assignment to a 
local variable. This prevents a race condition between 
passing the WAIT statement and using the global variable 
value. Consider the following code fragment: 

R00:OO:OO.l v := WAIT gv-a > 4 
R00:00:00.5 IF gv-a = 10 THEN 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O END-IF 

If the WAIT statement is satisfied at time t with the value 
10, but 0.1 seconds later a 3 is written by another sequence 
or by flight software, the body of the IF statement would 
not execute. 

On the other hand, using a copy of gv-a placed in the 
variable v would be guaranteed to cause the IF statement to 
work correctly, event if the value of gv-a changed before 
reaching the IF: 

R00:OO:OO.l V := WAIT gv-a > 4 
R00:00:00.5 IF v = 10 THEN 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O END-IF 

TEST-AND-SET is used on a counting semaphore for 
managing ash ared resource. This is a classical real-time 
programming access problem [3 ] .  An example use might be 
to enforce mutually exclusive access to an instrument suite 
by two separate, non-deterministic sequences. Using a check 
with a conditional followed by a subtraction leads to an 
intractable race condition whereby both blocks could 
complete the IF check before setting the semaphore with the 
blocking value. TEST-AND-SET allows an integer global 
variable to be checked and decremented in one instruction, 
preventing this race. 

R00:OO:OO.l V := TEST-AND-SET gv-a 

Call: in-line function execution 

A function may be executed in-line from another function 
using the CALL statement. The calling function is 
suspended, the caller is executed, and then the calling 
function resumes. The caller may pass parameters to and 
receive retum values from the called function as appropriate 
using a RETURN statement. Relative time tags for the 
statement after the CALL indicate the amount of time from 
the completion of the CALL statement. 

Calling does not start a separate thread of execution or use 
another sequence engine. Instead, resources on the calling 
engine continue to be used to maintain the thread of 
execution. Refer back to figure 2-2. This figure shows an 
engine using code that is stored on another engine (e.g. a 
master sequence calling a block in a library). The instruction 
pointer contains aval ue that indicates code residing on a 
different engine, but the instruction pointer itself resides on 
the same engine. The data stack accessed by that engine is 
always its own. 

Calls may be nested arbitrarily deeply, limited only by data 
stack space on the calling engine. However, call depth 
greater than about three become difficult to evaluate, and can 

make understanding the timing of the sequences 
problematic. 

Spawn: New Thread of Execution 

A new thread may be created to run in parallel with existing 
threads using the SPAWN statement. The spawning 
function may pass parameters to the spawned function, but 
no retum value is possible. Unlike CALL statements, 
SPAWN statements complete on the same tick of the clock 
at which they are invoked. The spawned function is 
scheduled for evaluation on the next time tick. 

Spawning is useful when an activity needs to be initiated 
that is functionally separate from the initiator, and contains 
no intrinsic ordering requirements relative to the initiator. 
For instance, a master sequence may need to initiate 
downlink at a certain time, but continue to manage 
instrument observations. If the downlink activities are 
consolidated in a block, the master sequence can simply 
spawn the downlink block, then continue on with its usual 
management tasks. This approach simplifies development of 
the master sequence by eliminating the interleaving of 
activities within the body of the sequence. It also allows the 
functionality of the downlink activity to be abstracted into a 
block, tested, then repeatedly used. 

3 .O PARAMETER USAGE IN BLOCKS 

Parameters allow organized information to be passed in to a 
function. Such functions are intended to be reused. The term 
for a reusable function is block. 

Using parameters, functionality can be abstracted and 
named, and the behavior of the block altered using different 
parameter values. This bounds the problem domain of a 
specific block, and makes reviewing the products for 
problems easier. In addition, calls to the block become 
easier to review, as the repetitive steps have been abstracted, 
and only the values of the controlling parameters needs to 
be considered. This quality was put to use in Mars Odyssey 
aerobraking sequence generation tool, discussed later. 

Parameters also allow a unique flexibility for changing the 
problem domain. Unlike sequence global variables, which 
have to be named at the beginning of the mission, parameter 
names are strictly local in nature. That is, the name is 
defined in the block. This allows the names and mix of the 
parameters of a block to be changed without requiring 
alterations to defined global variable names. 

In addition, parameters allow secure transmission of values 
into a block. Each invocation of the block occurs in an 
unintermptible fashion. The parameter values are copied as a 
snapshot in time, and passed to the invocation. Contrast 
this to the use of sequence global variables, where an 
implicit race condition exists due to the visibility of the 
variables to flight software and other blocks. At any point 
during the running of the block, a global variable value the 
block is depending on is subject to alteration, and 
considerable effort must be expended by designers and 
reviewers to guard against unintentional alteration. 



Once the set of parameters to a block is defined, the 
interface to the block is consolidated. Use of sequence 
global variables within a block should be eliminated except 
for accessing event-driven variables which represent 
spacecraft state. This limits the side effects produced by the 
block to spacecraft commands, and removes a potential 
source of race conditions and logic problems that altering or 
using global variables would allow. 

Parameters may be used to guide block execution logic and 
make selections for commands sent by the block, alter 
timing features of the block, or set spacecraft command 
parameter values of command sent by the block. Each of 
these uses shall be discussed in turn. 

Execution logic 

Coupled with the IF statement, parameters can easily 
determine which paths of code in a block are executed. By 
comparing parameter values to conditionals in an IF 
statement, a region of code is chosen for execution or 
skipped. Different IF constructs and parameter types are 
particularly good at different kinds of selection. 

An IF statement can be as simple as the IF clause followed 
by an END-IF. This usage is good for taking optional steps 
within a block based on parameter values or calculated 
logical values. A logical value passed in can be tested to 
select a set of statements for execution. 

BLOCK configure 
INPUT perform-stow ... 

BODY 

R00:OO:OO.l IF perform-stow = TRUE THEN 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O END-IF 

... 

In the above example, a call from a function of the form 

to the configure block would result in the execution of the 
guarded section of code. 

An IF clause followed by an ELSE clause is useful for two- 
value decision making within a block based on parameter 
values or calculated logical values. 

R00:OO:OO.l CALL configure TRUE, ... 

BLOCK sci-configure 
INPUT configure-fast . ... 

BODY ... 
R00:OO:OO.l 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O ELSE 

IF configure-fast = TRUE THEN 

R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.l ISSUE ... 
R00:OO:OO.O END-IF 

Parameters may also guide the number of times a certain set 
of statements is performed. Coupled with the WHILE 
construct, a parameter can be used to bound the execution of 
the number of repetitions desired. For instance, in the 
calibration block shown below, a parameter is passed in 

during the call to determine the number of times the science 
instrument calibration command is sent. 
BLOCK sci-configure 

INPUT configure-fast 
INPUT calibrationqasses ... 
DECLARE INT i := 0 
... 

BODY ... 
ROO:OO:OO.~ i := 1 
~00:00:00.1 WHILE i c= calibration passes DO 
R00:OO:OO.l ISSUE SCI-CALIB 10712.2 
R00:OO:OE.E i := i + 1 
R00:OO:OO.O END-WHILE ... 

Timing changes 

VML provides two programmable delays: DELAY-BY for 
a relative delay of some number of seconds, and 
DELAY-UNTIL for a delay involving an absolute time tag. 
The statements can accept parameter values (or even 
calculated local variables based on parameter values) to 
allow a block to change its timing behavior in response to 
invocation changes. 

For example, suppose the science configuration block has 
some amount of time that is supposed to elapse between 
each calibration pass completion and further calibration 
steps. The amount of delay could be controlled using a 
parameter and a DELAY-BY statement. 

BLOCK sci-configure 
INPUT configure-fast 
INPUT calibrationqasses 
INPUT calibration-delay ... 

BODY ... 
~00:00:00.1 i := 1 
R00:OO:OO.l WHILE i <= calibrationqasses DO 
R00:OO:OO.l ISSUE SCI-CALIB 10. 12.2 
R00:OO:OO.O DELAY-BY calibration-delay 
R00:OO:OO.l i := i + 1 
R00:OO:OO.O END-WHILE 

.. 

Another use might be found in a maneuvering block. 
Suppose the set of steps the spacecraft is supposed to take 
during ascent is dependent on the launch date of the vehicle, 
but the timing between those steps is fixed. Suppose further 
that there is an instantaneous launch window. Then the 
behavior of the block could be govemed by passing in the 
known launch time as a parameter to the block, preventing 
it from running the useful portions before the appropriate 
time has come to pass. Such a use might appear as below. 
The block could be started from the ground and its status 
verified before launch, but all useful activities would be 
delayed until after launch has occurred for safety reasons. 

BLOCK ascent 
INPUT launch-time ... 

BODY 
... ... 
R00:OO:OO.O DELnY-UNTIL launch-time ... 
A spawn of the above block from the ground or from a one- 
use sequence might appear as follows: 
~00:00:00.1 SPAWN ascent A2010-312T02:17:22.2, ... 



Command values 

safe mode recovery assistance 
maneuver operations 
science instrument configuration 
science instrument control 

Because VML can build commands on-the-fly, parameter 
values of a block can be directly substituted into commands 
issued on the spacecraft. This offers enormous flexibility to 
send commands without using lots of different paths 
through a block to select the correct constant command. 

For instance, suppose a spacecraft block needs to maneuver 
the spacecraft in some manner that involves slewing to a 
known right ascension and declination. The flight software 
has the ability to slew the spacecraft if so desired. The 
values to use in this command have a very large set of 
potential states and combinations. By building the 
command directly, the behavior of the block is simple and 
succinct. 
BLOCK acquire-star 

INPUT ra ;right ascencion 
INPUT dec ;declination ... 

ROO: 00: 05.4 EXTERNAL-CALL "issue-ad" "SLEW-TO" ,ra,dec ... 

Non-numeric values can be used in command substitution 
as well. The string representing a file name might be 
substituted into a file load command that loads one of the 
VM block libraries. 

BLOCK load-secondary-libraries 
INPUT sci-lib 
INPUT eng-lib 

... 
R00:OO:OO.l EXTERNAL-CALL "issue-cmd" "VM-LOAD", 7, sci-lib 
ROO: 00: 00.1 EXTERNAL-CALL "issue-cmd" "VM-LOAD" , 8 ,  eng-lib ... 

State values can also be used in command substitution. The 
string representing a state could be substituted into a 
command that selects a component. The block might appear 
as follows: 

BLOCK contact-dsn 
INPUT antenna 
INPUT bit-rate ... 

ROO : 00: 00.1 EXTERNAL-CALL "issue-cmd" "DWN-SELECT" , antenna 
... 

The call to this block from a one-use sequence might appear 
like this: 
R00:OO:OO.l CALL contact-dsn "high-gain", 120 

Since the dynamic command building software checks that 
only valid strings result in command dispatches, the block 
contains the same checks as would be done by a ground 
expansion of the command. Note that VML also has 
provisions for checking the result of dynamically building 
and dispatching a command, and the block could be aborted 
if a bad command send was attempted. 

4. BLOCK LIBRARY DEVELOPEMENT 

Blocks residing together for reuse in one module are referred 
to as a block library. Typically, a block library includes 
parameterized blocks capable of the following: 

initiation and termination of communications 

A mission may include one or more block libraries based on 
the need for specific capabilities during particular portions 
of a mission. For instance, a planetary mission may require 
different blocks in one library during launch, cruise, orbital 
injection, orbital maneuvering, and observation phase. A 
non-planetary deep space mission may be better suited to 
having separate libraries simultaneously loaded but with 
different functional content: engineering, science 
instruments, and fault protection. 

The block development process can be performed iteratively. 
Because blocks have a well-defined scope and a 
parameterized interface, the process of coding can be broken 
down among team members working in parallel. Blocks are 
treated as software, with a light weight iterative 
development process involving an architectural breakdown, 
some specification of purpose and requirements (perhaps in 
ablo ck dictionary), iterative development of VML code, 
and iterative testing. 

The architectural phase involves making decisions about the 
need for blocks to do certain tasks, and the name of these 
blocks. If multiple libraries are present on the mission, the 
library or libraries to which the block belongs must be 
determined. Block inclusion when there is one library is 
trivial. Block inclusion when there are multiple libraries 
must be explicitly decided, as only one copy of the block 
can be present within the VML flight component at any 
instance in time. If a block is needed on a per-phase basis, it 
should be included in those versions of the block library 
corresponding to phases where the block is needed. If it is 
needed across several instrument libraries which may be 
loaded simultaneously, it should be included instead in a 
common library divorced from the instrument libraries. 

Once entries exist to track each required block in a block 
dictionary, requirements regarding the functionality of that 
block are levied. A first pass at parameters to specify the 
interface for the block is made, including entry conditions 
regarding allowed values. Basic descriptions of the block's 
purpose and operating constraints are made. 

Next, the block undergoes iterative development by a 
specific developer. The developer uses an editor to produce a 
VML source file, which is fed to the VML Compiler to 
produce a binary. The binary is then executed in a 
workstation program called Offline Virtual Machine 
(OLVM). 

OLVM allows the user to interactively control the clock, 
examine variables, step through statement execution, collect 
human-readable reports showing the execution time of each 
command in the sequence, and generally debug the logic of 
the block. OLVM allows the block to be run at several 
hundred to several thousand times real-time, on the user's 
own workstation. This tool is a very inexpensive altemative 
to using a flight-like software testing laboratory with an 



flight-like CPU: no special personnel are required, no 
unique resources are scheduled, and the cycle time between 
detecting an error and fixing it is measured in seconds rather 
than days. And, since OLVM consist of the flight code with 
auser interface wrapper, the fidelity of behavior between 
OLVM and the flight code cycling on the vehicle 
approaches 100%. 

During execution, the user has the option of using a capture 
file to record all keystrokes in to OLVM, and all output 
generated. This capture file is human-readable, but can also 
act as a script to drive a rerun of the testing performed. This 
means that unit test scripts can be developed interactively, 
and kept for later retest. Once ablo ck is considered to be 
complete to some level of functionality, the block and its 
testing script can be stored in a revision control system for 
later extraction and testing. 

As the code for a block is completed, it is subject to a 
design review involving the developer, the operations 
manager, representatives from systems, and representatives 
from flight hardware and flight software subsystems. The 
experts evaluate the timing of commands shown in the logs 
produced by the developer using OLVM, and consider the 
content of each command executed. Changes are fed back to 
the block developer, who repeats the development cycle 
until all requirements are verified. The interactive test 
scripts produced during the process are available to retest the 
block quickly in case of further changes. 

As a final validation, blocks are run in a flight-like way in 
the expensive software test lab and on the vehicle. At this 
point in the process, however, the blocks tend to work 
correctly, as they have been repeatedly rung out for errors on 
the workstation tools. 

Test teams can be as small as two or three members due to 
the fast turnaround nature of the VML development process. 
Mars Odyssey's sequencing team numbered three, and 
developed roughly forty blocks. Work tends to be closely 
coupled with requirements, debugging is simple, and 
required changes can be fed back very rapidly without the 
need for expensive software test facilities. The process is 
also scalable to larger groups (as used on SIRTF) thanks to 
the ability to easily distribute the OLVM test environment. 

5.  UPLINK PRODUCT SIZE REDUCTION 

The combination of parameterization, variables, a large set 
of data types, and dynamic commanding makes it possible 
in some cases to reduce the size of uplinked products over 
traditional ground-expansion of sequences. One case is that 
of the Space Infrared Telescope Facility (SIRTF) 

Instrument design on SIRTF requires that large commands 
(hundreds of bytes) be transmitted frequently over a serial 
line. The exact byte patterns would have to be embedded 
repeatedly in a controlling sequence performing 
observations, leading to very large ground-expanded blocks 
which exceeded available uplink contact time through the 
Deep Space Network. 

During most of the commanding, however, most of the 
parameters in the instrument commands stays the same. The 
observatory has the equivalent of a series of modes the 
instrument needed to be in, with compatible sets of 
command parameters being repeated transmitted to the 
instrument. So, rather than ground expand the instrument 
commands, blocks set the observatory to particular 
instrument modes, represented by global variable values. 
Other blocks accept parameters for the instrument command 
values that vary, and dynamic commands are built from 
these parameters and the modal global variables. The 
controlling sequence then invokes a block with a few 
parameters, initiating a cascade of activity which results in 
sending commands to the instruments. 

The uplink size reduction for this situation is potentially 
very large. A simple mathematical expression represents the 
uplink load for any VML file. 

bytes- zLl byte$iinstri) (1) 

For a fully ground-expanded sequence with no logic, no use 
of parameterized blocks, and no use of global variables for 
state, equation ( 1 )  is dominated almost entirely by the 
command instructions. It can be estimated by the following. 

(2) 
bytes = 2 := l(byte$time)+ bytedopc) + byte$const) t byte$cmd)) 

= ( n ) ( 2 +  1 + 2+ cmdsize) 

= ( n ) ( 5  + cmdsize) 

For a hypothetical command size of 200 bytes, and 1000 
spacecraft commands, the number of uplink bytes is 
therefore 

(3) 
without considering framing overhead or insertion of error 
detection. These will scale linearly with the size of the 
uplink product and therefore will cancel out when 
examining the percentage savings. 

Under VML, physical values that would be held constant in 
the instrument commanding regime are loaded into sequence 
global variables, and the values are substituted on-the-fly 
into dynamically built commands. The block for creating 
and executing the command is held onboard in a block 
library, and is not subject to uplink load: once onboard, the 
instructions do not have to be retransmitted. Instead, a 
series of calls to this construction block is made from a 
master sequence, and consists of a block name followed by 
a series of parameters: 

bytes = 1000 * ( 5  + 200) - 205000 

R00:OO:OO.I CRLL instrexec 12, 5 ,  2 ,  4 

The instruction breaks down as a time tag (2 bytes), a 
CALL opcode (2 bytes) and a name ( 1  byte for offset in a 
table), for 4 bytes. Each call parameter requires 3 bytes of 
overhead plus a 4 byte value for a total of 7 bytes. 

bytes = cailbytes+ 4 * parmbytes 

- 4 + 4 * 7  (4) 
= 32 



So, since equation (1) is again dominated by the spacecraft 
commanding instructions, 1000 instructions becomes 

(5) 
Taking the ratio of the ground-expanded case versus the 
dynamically-issued case results in a savings of 

- (205000- 32000)/205000 (6) 

bytes;. 1000*(32) 
= 32000 

savings = (groundex - dyncmd)/groundex 

;. 84% 

The SIRTF numbers differ slightly from the above simple 
case, but the results were similar. The reduction in uplink 
brought the spacecraft closer to its target DSN uplink 
allocation, without developing complex instrument flight 
software additions or new sequencing flight software 
requirements. 

6 .  MARS ODYSSEY AEROBRAKING 

The Mars Odyssey aerobraking experience is a good 
example of using parameterized blocks to simplify 
operations in arep etitious but challenging mission phase. 
Unanticipated events can require a rapid response in order to 
maintain safe operations, or even to survive. 
Communication delays and processing with distant 
spacecraft can exacerbate the effect of unanticipated threats to 
spacecraft safety, as the ground is seeing a snapshot of state 
minutes in the past. Due to its flexible logic, VML is well 
suited to respond to threatening events. 

Aerobraking involves the use of a planet’s atmosphere to 
alter the spacecraft’s orbit [4]. After a bum to capture into a 
highly elliptical orbit, the spacecraft periapsis is lowered 
into the rarified atmosphere in order to use drag to alter the 
orbit. Successive passes through the atmosphere reduce the 
amount of energy of the orbit, and thus the apoapsis of the 
orbit is lowered. After the orbit is sufficiently lowered, a 
bum is performed to raise the periapsis of the spacecraft out 
of the atmosphere, place the spacecraft in a stable orbit. 

In order to maximize drag while maintaining control 
authority, the solar array of the Mars Odyssey spacecraft was 
presented perpendicular to the direction of travel. The period 
of Odyssey’s orbit around Mars was reduced from eighteen 
hours down to two hours. 

The series of steps for a drag pass is illustrated in figure 6- 
1. At the beginning of the pass, the spacecraft turns to 
aerobraking orientation, terminating contact with earth. 
Mars Odyssey has a hook for the solar array in order to lock 
it into a mechanically stable orientation. The solar array is 
placed into the hook. Then the spacecraft begins as lew to 
maintain the solar array at a known perpendicular orientation 
to the direction of travel, maximizing drag during the pass 
and lowering the apoapsis of the orbit. The spacecraft passes 
through the densest portion of the atmosphere, then exits 
that portion. The solar array is unhooked and reacquires the 
sun. Odyssey then slews to earth and initiates contact. 

drag pass 

slew to earth, 
k contact 

Figure 6-1 : Mars Odyssey aerobraking steps 

Nominal aerobraking passes 

Because of the frequency of the activity and its repetitious 
nature, the aerobraking activities were abstracted into a 
named block with parameters. The block implemented each 
of the steps required for the pass. The block also included 
parameters for time delays for placing the solar array in the 
hook, turning to drag attitude, acquiring attitude data when 
exiting the drag pass, slewing to earth, and completing 
packet retransmission. The duration of the drag pass and the 
number of drag pass playbacks of data were also 
parameterized. 

This block was invoked from an automatically generated 
relative sequence, which was replaced every few passes. The 
number of passes increased in frequency over time as the 
orbit was lowered and the orbital period shortened. One to 
two invocations of the aerobraking block occurred in the 
autogenerated sequence at the start of aerobraking, whereas 
six to nine occurred during end-game. By kicking off the 
parameterized aerobraking block, the team had smaller 
products to check which contained only the important 
information that would change from pass to pass. 

In order to increase the resilience of the process, the 
autogenerated sequence which called the aerobraking block 
covered more passes than was required. That way, when the 
next version of the sequence was available, it would be 
started before the previous version had run out, and 
terminated the previous version. This allowed extra passes 
to be available for use in case communications problems or 
other difficulties prevented timely delivery of the invocation 
for the next drag pass. 



End-game aero brakingpasses: autonomous pop-up 

The last few orbits (or end-game) of aerobraking is 
particularly sensitive to unexpected drag events, as the 
natural period of the orbit without the final periapsis raising 
bum is as short as 24 hours. Unexpected atmospheric 
blooming can dramatically increase the density of the 
atmosphere through which the spacecraft flies, causing a 
larger than expected decrease in orbital altitude and 
exceeding thermal limits on the solar array due to excess 
atmospheric friction. Notification of this condition to the 
ground, and issuing commands, is subject to light speed 
delays (30 minutes in the case of Mars Odyssey). In 
addition, the real behavior of the spacecraft grows more and 
more difficult to model as the spacecraft orbit shrinks. 
Navigation solutions take two to four hours to produce, 
which is longer than the last few orbits of the aerobraking 
process. For these reasons, some sort of onboard detection 
and response to unexpectedly large aerobraking during end- 
game was required on Mars Odyssey. 

Two separate elements were required for Mars Odyssey: 
some means of detecting the bloom's effect on the 
spacecraft, and some means for initiating a burn of the 
engines to raise the periapsis to a safe altitude. 

Detection was performed onboard using flight software to 
check IMU data [ 5 ] .  The flight software calculated an 
estimated time of periapsis during each pass, and placed this 
value into a sequence global variable. This time shift was 
used to advance or delay the kickoff of the aerobraking 
block in a normal pass, allowing better accuracy for the 
pass. In addition, this flight software could note to high 
level fault protection that an unusually large shift of the 
periapsis had been detected. If fault protection determined 
that the spacecraft was in the end-game, it invoked a 
separately developed pop-up block which would 
autonomously bum the engines to raise the spacecraft out of 
the atmosphere. 

The presence of the pop-up block, coupled with the flight 
software detection mechanism, would have allowed Mars 
Odyssey to reach a safe condition without the intervention 
of the ground even in the event of a communications 
dropout, should an unexpected blooming event have 
occurred. 

7. MIGRATING AUTONOMY TO MRO WITH VML-2 
Limited autonomy proved so useful that the next Mars 
orbital mission, the Mars Reconnaissance Orbiter, will fly 
with the enhanced VML-2 flight component. This flight 
component will allow even easier development of limited 
autonomic functions on the spacecraft. 

would provide a uniquely complete snapshot of the 
spacecraft's state. 

To this end, the VML-2 flight component to be flown on 
MRO is being upgraded with accessors into the telemetry 
system. These accessors provide the latest data pushed by 
the flight software to the sequence engines, and are viewed 
as read-only global variables. Rather than explicitly 
designing visibility to certain states and requiring the flight 
software components to place these values into global 
variables, all such state will implicitly be available for use 
should a sequence need to use it. 

This approach provides a great deal of flexibility for dealing 
with problems during the mission. Since telemetry provides 
almost all the information available to the ground-based 
operations team, simple decision making can be made 
onboard where necessary without incurring round-trip light- 
speed delays. The proximity of the decision making to the 
state detection makes it possible to handle a whole range of 
physical effects with short time constants. Small amounts 
of autonomy developed by the spacecraft operations team 
can supplement basic flight software capabilities. 

8. CONCLUSIONS 

The parameterization and block libraries made possible by 
VML simplify spacecraft operations by allowing 
functionality of the spacecraft to be abstracted. Uplink 
product size is minimized by the ability to call blocks that 
implement most of the command steps. This block is well- 
suited to a development process including review and test, 
using inexpensive runtime tools for most of the block 
development cycle. The block library approach also allows 
some autonomous operations aboard a mission to be 
implement without the development of autonomous flight 
software. 

Procedural orientation allows sequencing to be approached 
as a structured programming problem, which in turn allows 
higher quality products to be produced by smaller 
operations teams. The use of rapid check-out tools like 
Offline VM reduces the modification cycle time of 
sequences, allowing the operations development team to 
produce products on an accelerated schedule, 

Simple autonomy depends on access to data. To this end, 
VML-2 will include the ability to read telemetry points 
from within a sequence in order to use this data in the 
decision making logic with blocks. This will enable 
specifically targeted in-situ decision making capabilities 
without the development of flight software agents. 

Autonomous response requires two main components: a 
logic and decision making feature and access to state 
information. The logic and decision making features 
available in VML already provide enough capability to 
select and execute courses of action. What is needed is 
access to spacecraft state to provide data on which to base 
decisions. Ideally, access to the telemetry measurements 
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