
n

a

c>
c
)

W
 u

z
1

S

Q

a,
U

a,w

Q

3

0

L

(3

v
)
a,
.-

EST0
Earth Science Technology Off ie

Computational Tech ies (CT) Project

Goal: Demonstrate the power of high-end and scalable cost-effective computing environments 0
further our understanding and ability to predict the dynamic interaction of physical, chemical,
and biological processes affecting the Earth, the solar-terrestrial environment, and the universe.

Round 3 Competitively-Selected Awards:
Earth System Modeling Framework ($9.8m over 3 years)

Earth Science ($6m over 3 years)

Killeen/NCAR - Part I: Core Earth System Modeling Framework Development
J. MarshaWMIT - Part II: Modeling Applications for the Earth System Modeling Framework
A. da SiIva/GSFC - Part Ill: Data Assimilation Applications for the Earth System Modeling Framework

A. Donnellan/JPL - Numerical Simulations for Active Tectonic Processes
P. Houser/GSFC - Land Information Systems
C.R. Mechoso/UCLA - Atmosphere-Ocean Dynamics and Tracer Tratisport
J. Schnase/GSFC - Biotic Prediction: HPCC Infrastructure for Public Health and Env. Forecasting

Gombosi/U.Mich - A High-Performance Adaptive Simulation Framework for Space-Weather Modeling (SWMF)
P. Saylor/U.lllinois - Development of an lnteroperability Based Environment for Adaptive Meshes (IBEAM) with Applications

T. Prince/Caltech - High-Performance Cornerstone Technologies for the National Virtual Observatory
P. Colella/DoE/LLNL - A C++ Framework for Block-Structured Adaptive Mesh Refinement Methods

Space Science ($7m over 3 years)

to Radiation-Hydrodynamic Models of Gamma-Ray Bursts

Motivation for JPL’s CCA Task
ESTO-CT is a joint JPL-Goddard Space Flight Center (GSFC) Project
Project includes in-house scientists at JPL and GSFC who:

Help the teams meet their milestones
Advice/Consulting/Code Optimization

Support the project and the teams by developing tools and libraries
Some of the teams had mentioned CCA in their proposals as a
mechanism useful for developing their applications by:

Enabling small groups to write parts of a larger application without
understanding the full application’s code
Allowing the scientists to concentrate on science while still working
towards modern, reusable applications
Taking advantage of previously developed code
Supporting language in terope rabi I i ty

This led the project to start a task to investigate the CCA
The investigation task recommended a demonstration task

n

<
c
)

c
)

W

a,
3

L

.

c>
a,

.

S

a,
S

0

0

E" S

E" 00 E

0

S

3

.- c,

E" E 0

0

a,
0

S

8
TI a,
Q

5:
0

5: I

.- 8
Y

-

U

a,
S

u2 v
)
a,
U

>1
cd
0

= 0

a,
Q

v
)

a,
U

.- -

-

.- -
 E" E" c
,

S

a,
S

0

0

0

a
 0

v
)

S

0

cd
0

Q

Q

cd
U

a,
3

d

v
)

U

U

S

cd

.- c,
.- - c
,

.- L
c
,

.-

a,
0

S

E 8
l=
a,
Q

m

S

0

E

cd
v
)

3

0

5
:

.- .- t
c
,

Y

.- 3
E
 a,

cd
S

c
,

E .- E" a,
-
 a,

d

0

U

a,

c
,

a,
z 3 c, Y- O v
)

0
)

S

v
)

X

a,
a,
N

S

a,
S

0

0

0

0

.- c,

.- .- c,

e .- Zj
XI c
,

a,

v
)
a,
Y

c
,

.- E 5:
0

cd
0

Q

cd
v
)

k

c
,

.- -
.- v

)
'E

E

5

0

0

v
)
L

+!! 0 Q

s

a,

I
t:
0

Q

cd

>

cd

v
)

Q

Q

cd
a,
II

t:
cd
v
)

0

U

a,
v
)
3

t:
0

Q

v
)
a,
U

> 0

cd
0

a,
Q

v
)

cd
v
)

r
 0

Q

0

a,

.-. c
,

c
,

c
,

I

.- -

.- .- (3

e 0

L

a,
a,
cd
0

2

a,

-

-

-
 cd

0

cd
a,
0

S

a,
U

v
)

Y

S

c
,

2
 0

Common Component Architecture (2)
The framework provides the means to “hold” components and compose them

The framework is the application’s “main” or “program”
Frameworks allow exchange of ports among components without exposing

Frameworks may support sequential, distributed, or parallel execution models,

Frameworks provide a small set of standard services to components
Steps to run an application:

into applications

implementation details

or any combination they choose

Launch framework (use a GUI or a script)
Instantiate components required for app.
Connect appropriate provided and used ports
Start first component

i.e., click Go port in the GUI or call the Go pofl in a script

CCA Forum is an open community working developing the CCA
Currently, mostly DOE and academic

Credit: Jim Kohl and the rest of the CCA Forum

JPL’s CCA Task
The demonstration task ran from Feb. to Sept. 2002
The task was intended to answer two questions:
. How usable is the CCA software? What work is involved for a scientist to

take previously written software and turn it into components?
Once the components exist and are linked together, how does
performance of the componentized version of the application compare
with that of the original application?

The task had two deliverables:
Report on completed sequential component demonstration of Pyramid
AMR library and one application - 5/2002

. Report on completed parallel component demonstration of Pyramid AMR
library and one application - 9/2002

PYRAMID:
P V I I A M I ~ -

Parallel Unstructured Adaptive Mesh Refinement

Scalable to hundreds of processors & millions of elements

Application Arena

Computer Modeling & Simulation Applications with
complex geometry
Electromagnetic and semiconductor device modeling
St ruct u ral/Mechan ical/Flu id dynamics applications

John Z. Lou, Charles D. Norton, & Thomas A. Cwik
High Performance Computing Systems and Applications Group
h tt p ://h pc . j p I. nasa . g ov/A P PS/AM R

Sample Application:
Device Modeling

MICROWAVE ACTIVE DEVICES

Active devices have very
thin layers with extended
regions
Charge resides in thin
layers, but is driven by EM
fields extending into bulk
regions

This is a multi-scale problem

9 This problem was examined using Pyramid
in: T. Cwik, et. al, “Multi-Scale Meshes for
Finite Element and Finite Volume Methods:
Device Modeling ,” AP2000 M iI len n iu m
Conference on Antennas & Propagation

MESFET Model (not to scale)
Lin and Lu, IEEE Elec. Let. Sept 1996

Multi-Scale Mesh: Geometry Driven
Initial mesh, derived from a
commercial mesh generator,
contains large elements that
just preserve the thin-layered
geometry
Pyramid library performs
adaptive refinement of
initial mesh in stages

Hydrodynamic/ Maxwell
equations:

Problem solved using coupled

Irregular FDTD for EM updates
Box method for transport
updates

t

0 2 4 6 8 x

Our sample application is only concerned with building the mesh

Credit: Tom Cwik

3 3.5
x’-”

A

d
-
 X

cy

0

Multi-Scale Mesh:
Geometry Driven - Level 3

0 2 4 6 8
X

Credit: Tom Cwik

0

0.5

-1

-1.5

-2

cn
a,
Q

E

a

X

LLI
.

c

S

0

E" 0 cn a
m

cn
S

0

8
-

.

Q

Q

a

a

X

a,

a,
0

I

L

3

a,
3
 h

tr
0

Q

0

cd
%

S

0

(3

-
 8 11: S

a,
S

0

0

0

0

c
,

E"
-
 a,

c

a,

e 0

L
X

.o

a,
Y

-r
0

Q

v
,
a,
v
,

3

cd
U

t

cd

0

Q

0

cd

11:

S

a,
t

0

0

0

0

a,
11:
a,

r
-

(3

8 c
,

E" -

-

f-' 0

5 a, v
,
0

a,
1

-

-
 cd

a,
v
)

S

U

a

S

S

L

Y

8 a,
1

0

S

0

0

cd
a,

c
,

+

.- c,

Ff 0

E

0

Q

v
,
a,
U

> 0

cd

.
I

E 8 L t

a,
t

0

O

0

c
,

E- 5 a, cn 0 a,
11:
a,

-

-
 0

0

S

v
)

a

-c v
)

S

S

a,
1

0

II

.- L
c
,

c
,

L

C
I

L

.- 3

U

0

L

c
,

E.
0
,

S

.- L
6
 S

S

a,
cd

L

C
I

L

cn U

.-

Lessons from Basic Examples

Learning the CCA software, then writing and
running these examples took about 3 months of
part-t i me

Most of
What

effort for two people
this effort was learning:
are components?

I

What demonstration code is available?
How do we build and run the demos?
How do we extract the basics from the complex demos?

Create, build, and run our basic examples in C++
Very little work in actual writing

Componentizing the Software

Fairly short effort
About 3 weeks of part-time effort for two people

We basically took what we learned from the basic
examples (written in C++) and applied it to Pyramid
However, Pyramid driver and library are Fortran 90"

Understanding how to build components out of Fortran
90 code was our biggest challenge
Fortran 90 integration issues took a couple of weeks to
work out
First step: examine interface between potential
components. . .

A Sample Pyramid Program

A sample Pyramid program is Fortrango, and
looks o bject-o rie n ted

I . Instantiate a mesh object
2. Work with the mesh object, by calling method

functions
Calls to Pyramid are made with a first argument
that is the mesh object to be worked on

c a P A M R - M E T H O D (input - m e s h , ...)

In an object-oriented programming langauge,
these calls would look like

*&-mesh. m e t h o d (...)

Fortran 90 Components?

We observed that the main items passed across
the interface are Fortran 90 pointers
We had chosen to use the CCAFEINE framework,
which requires code to be written in C++
. We also could have used DCAFE, which allows simple

use of BABEL, and thus permits code in C, C++,
Fortran 77, Java, and Python

We decided to write a C++ version of the driver
code that could pass Fortran 90 pointers

. .

Details of Componentizing the Software
First, a test program was written that used a Fortran 90 pointer

This was compiled into object code, to understand the routine names that
the compiler was generating, so that these routines could later be called
from C
Additionally, the code was compiled to assembler, which was studied to
understand how a Fortran 90 pointer was stored and passed

Once these two issues were clear, it was a simple matter to write a C
main program, and to wrap the Pyramid library with a C wrapper

Neither of the main nor the wrapper are portable to other machines, OSes,
or compilers, but the non-portable code is limited to two specific files, and
can be rewritten for other environments

Next, a C++ main program was written, and a C++ wrapper was
written around the C-wrapped Fortran 90 library
Once this was working, it was a simple matter to use the knowledge
gained in the two-component Hello World example to turn the main
and the wrapped library into components, and run them in the
CCAFEINE framework

m

S

m- E

i= a

S

ZT
a

0
)

a,
c

cn
.- S

0

cd
N

S

a,
S

0

.- +
.
I

c
,

E" 0 0 0

U

+

cd
a,
c

> 0
a,
c

5

+

I

c
,

-
 3 v

)
a,
L

TJ a,
N

.- E

Z

6
%

0

6
%

 v
)

m

d-
o
i

7

v
)

Lo
7

o
i

7

v
)

m

d
-

cv
o

v
)

b

m

cv
0
 2

E

a,

v
)

+

v
)

a

7

0

I

.
I

E c, E

a,

v
)

v
)

f\
00

c
,

w 0

I

c
,

L

t

v
)

a,
S

I

c
,

Y

0

0

0

-
 € 0
U

a,
3

v
)

cd

L

+

L

E"

v
)

cv
m

o
i

7

II

v
)

0

Lo
o
i

7

II

v
)

d-
cv
0

ni 7

v
)

m

00 v
)
a,
c

k

u
 .-
.
I

L

0

+
a
,

E

cd
L

m

0

L

a,
cd
L

cd
n

c

I

m

S

m- N

a,
S

0

s

-
 cd > tn cd

.
I

.- L
C

I

3

E

cd
m

0

Q

n

a,
N

S

a,
S

0

O

0

a,
c

0
)

S

N

a,

L

L

.
I

C
I

E

c
,

.
I

.
I

-

-

8 v
)

v
)
a,
0

0

Q

a,
a
Q

L

0

cd
a,
S

0

cn
S

3

Y

L

-

-

-
 z L

5 3
E cd

a,
L

0

h

J1
0

0

a,

L

+

c
,

+

6
 0

+

S

a,
cd
-
 >

a, -5

5
g

O
L

J
1
a

0
0

€
5

r
+

0
0

o

v
)
a, 0

I I I m
0 0 I 1 I e

U

a,

0

Parallel Timing Results
Overall results

The overhead of componentization is negligible
Componentization doesn't hurt scalability

n
FA
I

.rl B

.c,
E

10000

1000

100

10

1
2 4 8 16 32

Number of Processors

Lessons Learned
There is currently a fair amount of learning associated with use the
CCA Forum’s technology, including the CCAFEINE framework

It may take 1-3 months for a computational scientist to be able to
componentize an initial application
A second should be able to be componentized fairly quickly

The lack of a means to write Fortran 90 components is a serious
shortcoming for many science applications

It is possible to get around this shortcoming
This introduces additional work for the componentizer
This adds the chance for additional errors to come into the application

Once an application is componentized, if the amount of work done in
each component call is large when compared with the time needed to
make a function call, it is likely that the componentized version of the
application will perform well

Conclusions and Future Work

Knowledge of ongoing work within the CCA Forum
(including our own) leads us to believe that the problems
with learning the CCA methodology and using Fortran 90
will be resolved in time, most likely in less than a year
Once this is done, the CCA model will be a promising
method for building large. single-processor and parallel
applications
Next Steps:

Try using CCA technology for one of the ESTO-CT applications
Work with the CCA Forum on the learning and Fortran 90 issues
We hope to do these during the next fiscal year (Oct. 2002 - Sept.
2003)

