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EST0 
Earth Science Technology Off ie  

Computational Tech ies (CT) Project 

Goal: Demonstrate the power of high-end and scalable cost-effective computing environments 0 
further our understanding and ability to predict the dynamic interaction of physical, chemical, 
and biological processes affecting the Earth, the solar-terrestrial environment, and the universe. 

Round 3 Competitively-Selected Awards: 
Earth System Modeling Framework ($9.8m over 3 years) 

Earth Science ($6m over 3 years) 

Killeen/NCAR - Part I: Core Earth System Modeling Framework Development 
J. MarshaWMIT - Part II: Modeling Applications for the Earth System Modeling Framework 
A. da SiIva/GSFC - Part Ill: Data Assimilation Applications for the Earth System Modeling Framework 

A. Donnellan/JPL - Numerical Simulations for Active Tectonic Processes 
P. Houser/GSFC - Land Information Systems 
C.R. Mechoso/UCLA - Atmosphere-Ocean Dynamics and Tracer Tratisport 
J. Schnase/GSFC - Biotic Prediction: HPCC Infrastructure for Public Health and Env. Forecasting 

Gombosi/U.Mich - A High-Performance Adaptive Simulation Framework for Space-Weather Modeling (SWMF) 
P. Saylor/U.lllinois - Development of an lnteroperability Based Environment for Adaptive Meshes (IBEAM) with Applications 

T. Prince/Caltech - High-Performance Cornerstone Technologies for the National Virtual Observatory 
P. Colella/DoE/LLNL - A C++ Framework for Block-Structured Adaptive Mesh Refinement Methods 

Space Science ($7m over 3 years) 

to Radiation-Hydrodynamic Models of Gamma-Ray Bursts 



Motivation for JPL’s CCA Task 
ESTO-CT is a joint JPL-Goddard Space Flight Center (GSFC) Project 
Project includes in-house scientists at JPL and GSFC who: 

Help the teams meet their milestones 
Advice/Consulting/Code Optimization 

Support the project and the teams by developing tools and libraries 
Some of the teams had mentioned CCA in their proposals as a 
mechanism useful for developing their applications by: 

Enabling small groups to write parts of a larger application without 
understanding the full application’s code 
Allowing the scientists to concentrate on science while still working 
towards modern, reusable applications 
Taking advantage of previously developed code 
Supporting language in terope rabi I i ty 

This led the project to start a task to investigate the CCA 
The investigation task recommended a demonstration task 
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Common Component Architecture (2) 
The framework provides the means to “hold” components and compose them 

The framework is the application’s “main” or “program” 
Frameworks allow exchange of ports among components without exposing 

Frameworks may support sequential, distributed, or parallel execution models, 

Frameworks provide a small set of standard services to components 
Steps to run an application: 

into applications 

implementation details 

or any combination they choose 

Launch framework (use a GUI or a script) 
Instantiate components required for app. 
Connect appropriate provided and used ports 
Start first component 

i.e., click Go port in the GUI or call the Go pofl in a script 

CCA Forum is an open community working developing the CCA 
Currently, mostly DOE and academic 

Credit: Jim Kohl and the rest of the CCA Forum 



JPL’s CCA Task 
The demonstration task ran from Feb. to Sept. 2002 
The task was intended to answer two questions: 
. How usable is the CCA software? What work is involved for a scientist to 

take previously written software and turn it into components? 
Once the components exist and are linked together, how does 
performance of the componentized version of the application compare 
with that of the original application? 

The task had two deliverables: 
Report on completed sequential component demonstration of Pyramid 
AMR library and one application - 5/2002 

. Report on completed parallel component demonstration of Pyramid AMR 
library and one application - 9/2002 



PYRAMID: 
P V I I A M I ~  . . .. - ... . .. 

Parallel Unstructured Adaptive Mesh Refinement 

Scalable to hundreds of processors & millions of elements 

Application Arena 

Computer Modeling & Simulation Applications with 
complex geometry 
Electromagnetic and semiconductor device modeling 
St ruct u ral/Mechan ical/Flu id dynamics applications 

John Z. Lou, Charles D. Norton, & Thomas A. Cwik 
High Performance Computing Systems and Applications Group 
h tt p ://h pc . j p I. nasa . g ov/A P PS/AM R 



Sample Application: 
Device Modeling 

MICROWAVE ACTIVE DEVICES 

Active devices have very 
thin layers with extended 
regions 
Charge resides in thin 
layers, but is driven by EM 
fields extending into bulk 
regions 

This is a multi-scale problem 

9 This problem was examined using Pyramid 
in: T. Cwik, et. al, “Multi-Scale Meshes for 
Finite Element and Finite Volume Methods: 
Device Modeling ,” AP2000 M iI len n iu m 
Conference on Antennas & Propagation 

MESFET Model (not to scale) 
Lin and Lu, IEEE Elec. Let. Sept 1996 



Multi-Scale Mesh: Geometry Driven 
Initial mesh, derived from a 
commercial mesh generator, 
contains large elements that 
just preserve the thin-layered 
geometry 
Pyramid library performs 
adaptive refinement of 
initial mesh in stages 

Hydrodynamic/ Maxwell 
equations: 

Problem solved using coupled 

Irregular FDTD for EM updates 
Box method for transport 
updates 

t 

0 2 4 6 8 x 

Our sample application is only concerned with building the mesh 

Credit: Tom Cwik 
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Multi-Scale Mesh: 
Geometry Driven - Level 3 

0 2 4 6 8 
X 

Credit: Tom Cwik 
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Lessons from Basic Examples 

Learning the CCA software, then writing and 
running these examples took about 3 months of 
part-t i me 

Most of 
What 

effort for two people 
this effort was learning: 
are components? 

I 

What demonstration code is available? 
How do we build and run the demos? 
How do we extract the basics from the complex demos? 

Create, build, and run our basic examples in C++ 
Very little work in actual writing 



Componentizing the Software 

Fairly short effort 
About 3 weeks of part-time effort for two people 

We basically took what we learned from the basic 
examples (written in C++) and applied it to Pyramid 
However, Pyramid driver and library are Fortran 90" 

Understanding how to build components out of Fortran 
90 code was our biggest challenge 
Fortran 90 integration issues took a couple of weeks to 
work out 
First step: examine interface between potential 
components. . . 



A Sample Pyramid Program 

A sample Pyramid program is Fortrango, and 
looks o bject-o rie n ted 

I .  Instantiate a mesh object 
2. Work with the mesh object, by calling method 

functions 
Calls to Pyramid are made with a first argument 
that is the mesh object to be worked on 

c a P A M R - M E T H O D  (input - m e s h ,  ...) 

In an object-oriented programming langauge, 
these calls would look like 

*&-mesh. m e t h o d  (... ) 



Fortran 90 Components? 

We observed that the main items passed across 
the interface are Fortran 90 pointers 
We had chosen to use the CCAFEINE framework, 
which requires code to be written in C++ 
. We also could have used DCAFE, which allows simple 

use of BABEL, and thus permits code in C, C++, 
Fortran 77, Java, and Python 

We decided to write a C++ version of the driver 
code that could pass Fortran 90 pointers 



. .  

Details of Componentizing the Software 
First, a test program was written that used a Fortran 90 pointer 

This was compiled into object code, to understand the routine names that 
the compiler was generating, so that these routines could later be called 
from C 
Additionally, the code was compiled to assembler, which was studied to 
understand how a Fortran 90 pointer was stored and passed 

Once these two issues were clear, it was a simple matter to write a C 
main program, and to wrap the Pyramid library with a C wrapper 

Neither of the main nor the wrapper are portable to other machines, OSes, 
or compilers, but the non-portable code is limited to two specific files, and 
can be rewritten for other environments 

Next, a C++ main program was written, and a C++ wrapper was 
written around the C-wrapped Fortran 90 library 
Once this was working, it was a simple matter to use the knowledge 
gained in the two-component Hello World example to turn the main 
and the wrapped library into components, and run them in the 
CCAFEINE framework 
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Parallel Timing Results 
Overall results 

The overhead of componentization is negligible 
Componentization doesn't hurt scalability 
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Lessons Learned 
There is currently a fair amount of learning associated with use the 
CCA Forum’s technology, including the CCAFEINE framework 

It may take 1-3 months for a computational scientist to be able to 
componentize an initial application 
A second should be able to be componentized fairly quickly 

The lack of a means to write Fortran 90 components is a serious 
shortcoming for many science applications 

It is possible to get around this shortcoming 
This introduces additional work for the componentizer 
This adds the chance for additional errors to come into the application 

Once an application is componentized, if the amount of work done in 
each component call is large when compared with the time needed to 
make a function call, it is likely that the componentized version of the 
application will perform well 



Conclusions and Future Work 

Knowledge of ongoing work within the CCA Forum 
(including our own) leads us to believe that the problems 
with learning the CCA methodology and using Fortran 90 
will be resolved in time, most likely in less than a year 
Once this is done, the CCA model will be a promising 
method for building large. single-processor and parallel 
applications 
Next Steps: 

Try using CCA technology for one of the ESTO-CT applications 
Work with the CCA Forum on the learning and Fortran 90 issues 
We hope to do these during the next fiscal year (Oct. 2002 - Sept. 
2003) 




