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ABSTRACT - Formation estimation requires inter-spacecraft communication 
links to  exchange sensor measurements and internal data. Mixing asyn- 
chronously time-tagged communicated data causes formation estimation errors. 
Since asynchronous time-tagging can be modeled as a time delay, the impact of 
these clock-induced estimation errors are characterized as a function of time 
delay magnitude. This characterization allows the impact of asynchronous 
time-tagging to  be evaluated before costly mitigation strategies (e.g., forced clock 
synchronization) are undertaken. Several simulation case studies were carried 
out to  demonstrate the eflects of time delays. I t  is  shown that in some cases, 
estimator updates with time-delayed measurements caused more estimation er- 
ror than update-free estimator propagation. 

1 - INTRODUCTION 
During a typical spacecraft formation flying mission, streams of time-tagged data are exchanged 
among formation members. Each formation member can obtain formation state variables, such 
as relative position and attitude, through either direct measurement and/or through inter- 
spacecraft communication. For example, the translational state can be propagated by inte- 
grating the difference between internal and communicated inertial measurements [Hada 011. 
Similarly, relative position and velocity measurements can be communicated between space- 
craft for estimator updates. When any two data sets from different spacecraft are mixed and 
processed according to their attached time-tags, estimation errors will result from differences 
in their clocks’ reference times (i.e., epoch difference). 

Two solutions to the asynchronous time-tagging problem are: 1) to force synchronization of 
every spacecraft’s clock, or 2) to bound epoch differences by measuring communication delays 
and then compensating for the differences using these b0unds.l Both solutions, however, are 
costly to implement. Forced clock synchronization is operationally challenging since CPU 
clocks must be dynamically adjusted; and measuring epoch differences adds complexity to the 
communication system (e.g., pinging through multiple spacecraft). As both solutions involve 
considerable effort, it is desirable to first assess the performance loss in a formation estimator 
if epoch differences are uncompensated. 

General formation estimation analysis is challenging because communication and observa- 
tion links (routes by which information is exchanged and relative measurements are made-See 
[Kang 011) can dynamically reconfigure thereby requiring a reconfiguration within the forma- 
tion estimator as shown in Figure 1.1. Estimator analysis, however, is simplified in the self- 
centralized estimation architecture introduced in [Kang 01, Hada 011. In this architecture, 
state definitions are unaffected by communication routes (i.e., links). The contribution of this 
paper is to assess the errors induced by asynchronous time-tagging in a self-centralized forma- 
tion estimator. 
~~ 

‘Reception time-tagging, in which a spacecraft time-tags data as it is received, can bound epoch differences: 
However, the difference can still can drift within the transmission and reception time window. 
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Fig. 1.1: Demonstration of Dynamic Observation Link 

2 - MODELING ASYNCHRONOUS TIME-TAGGING 
Since a typical spacecraft CPU clock drifts over time due to thermal and calibration errors, 
epoch differences and the estimation errors they induce will grow. For example, the Deep Space 
1 (DS1) spacecraft clock drifts approximately 1 second per week. A CPU’s clock drift can be 
modeled using Allan variance curves [Alla 75, Barn 831 associated with a typical internal quartz 
oscillator. More simply, clock drift can be modeled as a linear time-invariant system driven 
by white noises whose intensities are approximated by bounding Allan variance curves (see 
Figure 2.1). Such a model shows that significant drift occurs on a time scales of hours. Since 
the estimator error analysis in this paper focuses on estimator convergence which occurs on the 
time scale of minutes, epoch differences can be modeled as a constant time shift. Subsequently, 
we refer to epoch differences as clock delay, where a “delay” can be positive or negative. 
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Fig. 2.1: Clock Drift Modeling [Helw 791 

2.1 - Augmentation of Self-centralized Estimator with Clock Delay Models 
Consider an N spacecraft formation with a self-centralized estimator architecture [Kang 011. 
Each spacecraft is assumed to have an accelerometer and a limited field-of-view relative position 
sensor assembly (RPSA), for example, the GPS-like Autonomous Formation Flying (AFF) 
sensor [Purc 981 or optic-based sensors. For this architecture, the formation state variables are 
defined as the relative states between the estimator hosting spacecraft and the other spacecraft 
in a one-to-one manner. More precisely, let the self-centralized estimator be hosted in spacecraft 
i (S/Ci) .  The state variables are the relative states (position and velocity) between S/Ci’s 
and S/Cj’s [respective RPSA’s], where j = 1, ..., N ,  with j # i. With these architectural 
assumptions, we now augment the estimator propagation and estimator measurement update 
steps to include a model of the clock delay. 
Augmenting Estimator Propagation Step: Inertial data packets from the other N - 1 

spacecraft need to be communicated to S/Ci for the propagation of the state variables (Le., 
relative velocities and positions). The data sent from S/Cj to S/Ci can be written as: 

(2.1) u. .  MjJ  [u;; + w;” x (w;’” x l j >  + aj  JB x l j ]  , j = 1, ..., N and j # i 3 2  - 

where M j J  is the rotation matrix from S/Cj’s body frame to an inertial frame J ,  ~$2 is S/Cj’s 
accelerometer measurement, w:B and aiB are the angular rate and acceleration of S/Cj’s body 



frame (origin at the center of mass) with respect to frame J ,  and Zj is the moment arm from 
S/Cj’s accelerometer to the RPSA. 

The signal uji(t) can be routed to S/Ci through various communication links, but the inertial 
data is assumed to be time-tagged by S/Cj’s clock. In reference to S/Ci’s time, the signal will 
appear shifted by a constant value T;~. That is, the signal communicated to S/Ci from S/Cj, 
usi(t), will be given by ~ ; ~ ( t )  = uji(t+ rjoi), where T;~ is the constant clock delay between S/Cj’s 
and S/Ci’s clocks. A first order Pad6 approximation results in the following model for u;~:  

TYPE I 
y .  - -Ly .  

3k - r;a 3k + z 3 k  

zc = 4 Y . k  - 2 .  
3k T ; ~  3 Jk 

TYPE I1 
2 

y k j  = - T Y k j  + z k j  
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c - 4  
z k j  - F Y k j  - z k j  
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Meas. Class Meas. Equation 
DIRECT 
TYPE I z j k  Pik  - p i j  + n j k  

z - .  23 = p i j  + n . .  a3 

TYPE 11 z k j  = p i j  - P i k  + n k j  

2This approach is similar to a reduced order system analysis, where the covariance equation can be con- 
structed by a higher order plant model and a simplified estimator model. 

Index Delay Description 
f o r j = l . . - N , j # i  0 Meas. from S/Ci 
for k = 1 * + * N, IC # j rji Meas. from S/Cj 
for k = 1 * N ,  k # i, j r k i  Any s / c k  to s/cj 



RPSA measurement is TYPE I (or II), that is, the measurement is communicated from S/Cj 
(or S/Ck) and so has clock delay. 
3.1 - Estimator Design 
The spacecraft are assumed to be free-flying, i.e., their relative dynamics are described by a 
double-integrator model. The truth model, including accelerometer biases, is then 

where bi and bj are the spacecraft accelerometer biases, pi, p j ,  r]i and qj are the accelerometer 
bias and bias rate noises, V z j  is the relative velocity, uii is the internal inertial data at S/Ci 
((2.1) with j replaced by i) and pij is the relative position. (3.1) depicts an observation link 
[Kang 011 between S/Ci and S/Cj for any arbitrary j in formation. 

For estimator design we use a modified model since only the relative accelerometer bias, 
bi - bj ,  can be measured easily. Rather than estimating this difference directly, however, it is 
convenient to assume that bj is a constant, bj”, and absorb bj’s bias noises as well as hi's into a 
new variable bij with bias noises pij and qij. The modified relative bias bij and b; contain the 
same information as bi - bj. With this modification, the model for estimator design is 

Note that Mj J and bj” must also be communicated to S/Ci. When estimator 
H3 are designed, the resulting estimator can be written as: 

&j  = HI ( Z  - 2) 

& = Rj + H ~ ( z  - 2)  , 

A 

V . .  23 = -MiJbij - MC 3 J  bo 3 + uii - uC.  3 2  + H2 ( Z  - 2) 

J 

gains HI,  H2 and 

(3.3) 

where (t) signifies an estimate. The measurement z represents any of the measurements listed 
in Table 2.1. Also, the superscript “c” notation is not applied to bj” since it is constant and 
therefore unaffected by clock delay. 
3.2 - Estimation Error Covariance Analysis 
Consider the modified communicated inertial data model of 

and the communicated measurement model of 

(3.5) 

The equations (3.1), (3.4) and (3 .5 )  can be combined and rewritten in terms of residual states 
b& = bij - b,, l$ = & - V,, and p:j = pij - &. The resulting full estimator system dynamics 
(i.e., estimator plus truth model) can be written as: 

A A A A A 
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The estimator system state X e  can be separated into three parts, 

Xe = Xel I xel (o)=o + Xe2 I xeZ (o)=o + Xe I u=o,w=o : 

A 
= F X e  + GW + U . 

The stochastic estimation error contribution due to the sensor driving noises is 

where Pxe = E [ X e X T ] ,  Qw = E[WWT], E[.] is the expectation operator and -T denotes trans- 
pose. The deterministic estimation error contribution due to the sensor signals is 

t 
Xe2 = FXe2 + U + Xe2 ( t )  = / eF(t-u)U (a)  da . (3-9) 0 

Finally, X ,  Iu=o,w=o is the zero-input response of the estimation error state. 
3.3 - Error Analysis Case 1: Propagation Only 
Consider estimator propagation without any measurement updates (i.e., H I ,  H2 and H3 are all 
zero). Recall this situation can happen during a formation initialization or during a reconfigu- 
ration maneuver with temporary loss of RPSA lock. Examining only the deterministic portion 
of the estimation error of (3.6), the residual state (i.e., estimation error) dynamics are 

From (3.10) it is seen that the deterministic estimation error is driven by the bias model 
mismatch I(-MiJb:j + M ~ J  (t + T;~) b711 and acceleration changes Auji = lluji ( t )  - uji (t  + I/  
over the clock delay window T;~. The second term depends on how fast the acceleration of S/Cj 
changes over time, thus the error increases as acceleration profiles become steeper. 

A 
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3.4 - Error Analysis Case 2: Propagation and DIRECT Measurement Update 
A DIRECT measurement update (i.e., z - i = p:j + nij) is added to the previous propagation 
only case of (3.10). Note that the full estimator system equations of (3.6) are for a TYPE 
I measurement, and so (3.6) is modified to obtain the following Propagation plus DIRECT 
measurement residual state dynamics: 

I [ $ 1  = [ -!iJ 121 [ $ 1  + [ MjJb;;Auji] 0 
+ [--Ad. pi - MSkfjJI1.j . - Hlnij 

aJ% + M j J V j  - H2nij 

Pi j  I -H3 -H3nij , 
(3.11) 

recalling Auj, = up ( t )  - up (t + Based on the duality between Linear Quadratic Regula- 
tors (LQRs) and Kalman Filters (KFs), (3.11) can be viewed as a disturbance rejection problem 
with K F  feedback. The system will exhibit better disturbance rejection (i.e.) lower estimation 
error) if the estimator design has a larger bandwidth and more gain. Consequently, DIRECT 
RPSA measurements and applying less weight to the communicated inertial data can reduces 
the effects of clock delay. 
3.5 - Error Analysis Case 3: Propagation and TYPE I Measurement Update 
Now consider the case in which S/Cj measures the relative position between itself and S/Ci and 
communicates this measurement to S/Ci for S/Ci’s estimator update. Since the measurement 
at S/Cj is z = -pij + nji, the delayed residual can be written as 

A 

ZC - 2 = ~ y . .  7 0  3% - ( - p . .  a3 + n..)  3% + 6.. a3 = -pe. 23 + ( p . .  v ( t )  - p . .  23 (t + Tji 0)) - nji .  (3.12) 

Applying (3.12) to (3.6) and considering only the deterministic term, results in the following 
residual state dynamics 

3% 

A where A p i j  = pij  ( t)  - pij  (t + The rightmost term of (3.13) shows that nonzero relative 
velocity (ie. A p i j  # 0 )  will contribute to the estimation error, and that the error rate is linearly 
proportional to A p i j .  Since A p i j  is being multiplied by the estimator gains, estimator designs 
with higher bandwidths and larger gains will not reduce the clock delay-induced errors. 

4 - SIMULATION ANALYSIS 
In order to demonstrate the impact of asynchronous time-tagging on formation estimation, a 
three spacecraft formation example is simulated in MATLAB. The spacecraft are modeled as 
identical rigid bodies with masses of 308 kg and principal moments of inertia of 79.5, 57.2, 
and 44.7 kg m2 about the x, y and z body axes, respectively. Each spacecraft is assumed 
to carry a 6-DOF formation flying sensor suite with an RPSA accuracy of 2cm. Idealized 
control (i.e., perfect state feedback) is assumed. This last assumption allows the estimator 
to operate open-loop and, therefore, the assessment of estimation errors is independent of the 
particular controller used. That is, controller-estimator interactions are removed from the error 
assessment. 

A triangular formation is initially maintained with 10 m spacecraft separations. Then the 
formation is expanded to 22-meter separations, as shown in Figure 5.1. Both SIC2 and S/C3 
communicate inertial data to SIC1 for its estimator propagation. It is assumed that RPSA mea- 
surements are not available between SIC1 and SICS; this assumption simulates the propagation- 
only Case 1. However, both DIRECT and communicated (TYPE I) measurements are available 
between SIC1 and SIC2 to simulate Cases 2 and 3. The estimation errors (residual states) are 



obtained by differencing the simulated truth state with the estimates from an estimator de- 
signed on a delay-free model. These errors are simulated for various clock delay magnitudes 
ranging from 0.1 to 1 second. 
4.1 - Simulation Results 
Case 1 (propagation only) results are shown in Figure 5.2. The upper plot shows the estimator 
propagation error due to clock delayed accelerometer signals from S/C3. During the expansion 
maneuver, the estimation error can range from 25cm to over 2 meters. The lower plot shows 
the long-term growth of the estimation error due to uncalibrated accelerometer bias (the short 
term, deterministic error has been removed for clarity). Figure 5.3 shows the results for Cases 2 
and 3. In the upper plot DIRECT RPSA measurement updates reduce the clock delay-induced 
errors resulting from communicated inertial data, and they calibrate the relative accelerometer 
bias. TYPE I RPSA measurements, however, are also clock delayed (lower plot of Figure 5.3), 
and so measurement updates no longer improve estimates during a maneuver. The estimation 
error can be worse than in propagation-only estimation. 

Asynchronous time-tagging of communicated data in a formation will induce estimation errors. 
These errors were first analyzed and then assessed through simulation as a function of the 
magnitude of the epoch difference between spacecraft clocks. When no measurement updates 
are done by the estimator (i.e., propagation-only mode), the clock delay-induced estimation 
error depends on the steepness of the acceleration profiles of the spacecraft. Relative position 
measurements made by the estimator-hosting spacecraft can reduce the size of this acceleration 
profile-error. It was shown that the larger the estimator feedback gain and bandwidth, the 
more clock delay-induced errors are attenuated. However, when communicated relative position 
measurements are used for estimator measurement updates, the clock delay-induced estimation 
error can become worse. In the simulated examples, the estimation error doubled from the 
propagation-only case. Since the estimator gains multiply the communicated relative position 
measurements, increasing the estimator’s gain does not attenuate the clock delay effects, rather, 
it increases the error. 

5 - CONCLUSIONS 
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Fig. 5.1: Spacecraft Relative Position, Responding to a Formation Expansion Command 
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CASE 1: Free Propagation without Measurement Updates 
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Fig. 5.3: CASE 2 & 3: Direct and Communicated Measurement Updates 




