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ABSTRACT 
In this paper an in-depth analysis on the performance of the Fourier analysis in estimating the first spectral moment of 
Doppler spectra of rain signals from a spaceborne radar is presented. The spectral moment estimators based on the 
Fourier analysis (DFT-SME) have been widely used in the field of Doppler weather radar in measuring rainfall velocity 
and they have been found to be almost optimal for small normalized spectral widths (wN). They are also more 
computationally efficient than the Maximum Likelihood estimators. However, the existing analytical approaches for 
evaluating the DlT-SME performance have mostly been focused on a limited range of small W N  (e.g., WN< 0.1) that are 
typical of ground based and airborne Doppler weather radars. With the rapid advances in spaceborne radar technologies, 
the flying of a Doppler precipitation radar in space to acquire global data sets of vertical rainfall velocity has become a 
real possibility. The objective of this work is to develop a generalized analytical approach such that it can be extended to 
larger values of WN (e.g., WN - 0.2) in spaceborne radar applications. In particular, a method has been developed to 
properly treat the aliasing effects, which have become a significant error source in spaceborne remote sensing. 
Furthermore, several versions of DFT-SME (differing on the adopted strategies for noise handling and choice of the first 
guess of the mean Doppler velocity) have been analyzed with this generalized approach. The analytical results are in 
excellent agreement with those obtained through simulation. Such encouraging results suggest that the proposed 
approach is a reliable technique for fast and accurate prediction of DFT-SME performance for a variety of spaceborne 
radar system parameters. 
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1. INTRODUCTION 

The research to assess the performances of spectral moments estimators (SME) applied to Doppler weather radars has 
been focusing so far to the class of ‘narrow spectra”. Although the boundary of such class cannot be defined in strict 
terms, a qualitative classification based on the applicability of the various approximations assumed in such performance 
assessments can be as follows: when the normalized spectral width WN < 0.1 the effects of aliasing can be neglected with 
no significant loss of validity of the results, in this case all conclusions drawn for narrow spectra hold satisfactorily. 
Ground-based and airborne Doppler weather radars developed in the last decades were designed to provide spectral 
widths in this range’*2*3*4. On the other hand, when WN > 0.3 the spectrum can be undoubtedly classified as ‘broad’ and 
SME performances (which can be rated in general as ‘poor’) are to be evaluated following more complex approaches. In 
the region between 0.1 and 0.3, the properties and approximate formulas used for narrow spectra loose (progressively 
when increasing wN) their validity, therefore more accurate approaches are necessary to accurately assess the 
performances of a SME. 

When spaceborne applications of Doppler weather radar are considered, relatively large normalized spectral widths (wN) 
are to be foreseen. In fact, if the antenna pattern can be approximated by a 2-D Gaussian, the wN of the Doppler spectrum 
measured by a pulsed weather radar observing a spatially homogeneous random field can be expressed as4: 
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where h is the operating wavelength, PRF 
is the Pulse Repetition Frequency, v, its 
linear velocity, and B3a is the antenna 
3dB width (one way), WR is the Doppler 
spectral width of the distributed target (in 
the case of rainfall WR ranges between 1 
and 5 d s ) .  For a Low Earth Orbiting 
satellite v, is typically -7 km s-'. 
Furthermore we can consider the 
approximation z y UD, where ycan 

5000 0.50 0.34 0.25 0.20 0.17 0.10 
SO00 0.42 0.28 0.21 0.17 0.14 0.09 
7000 0.36 0.24 0.18 0.14 0.12 0.07 
8000 0.32 0.21 0.16 0.13 0.11 0.06 

betypically assumed - 1.25, it follows from Eq. (1) that wN does not depend significantly on h. The PRF upper bound is 
determined mainly by the thickness of the atmosphere layer to be monitored: for precipitation measurements at a 
scanning angle p we have: 
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where H is the troposphere thickness (typically around 20 km) and c is the speed of light. Depending on the scanning 
strategy ( i e . ,  maximum p) we can consider a maximum PRF ranging between 5000 Hz and 8000Hz. Table 1 shows the 
normalized spectral widths for different spacebome radar configurations. 

While an antenna of 10m could provide spectra with wN similar to that of airborne radars, obvious economical and 
technological requirements lead to the choice of smaller antennas, whenever possible. On the other hand, a 2 m antenna 
such as that of the TRMM Precipitation Radar (PR) or the one planned for the dual frequency precipitation radar of the 
GPM mission, even if a nadir-only scanning strategy is considered (i.e., the only one allowing PRF up to 8 kHz) would 
generate spectra with wN > 0.3, unsuitable for accurate estimates of any spectral moment. Antenna diameters between 3 
and 6 meters are therefore considered as the region where to look for the optimal trade-off, for the purpose of radar 
system and mission design. The corresponding range of w~ is between 0.1 and 0.3. 

In Section 2 the Discrete Fourier Transform based SME (DFT-SME, elsewhere referred to also as periodogrum 
processing) is described, in Section 3 the method for DFT-SME performance assessment is described and, finally, in 
Section 4 results of such method are compared with those provided by previously developed methods and with 
simulations. 

2. RAINFALL DOPPLER SPECTRUM AND DFT-SME 

Let us consider the sequence of M complex radar samples F, = s, + n, spaced by Ts=l/PRF and affected by rainfall 
signal fluctuation6 and white noise. The estimate of the power spectrum Pcf3 is given by': 

Such estimate is calculated in discrete-time / discrete-frequency through the Fast Fourier Transform, or, more generally, 
by the Discrete Fourier Transform: 

In general we are interested in the zero-th moment (related to the rain reflectivity), in the first moment (related to the 
rainfall average vertical velocity) and in the second order central moment (related to the rainfall Doppler width, and 
therefore to the spread of raindrop diameters around the mean diameter). When a narrow spectrum is observed, the Pulse 
Pair algorithm (PP) was proved to be the most efficient SME (in fact it does not require the calculation of the whole 
spectrum, and therefore it requires the minimum amount of calculations, it reaches the theoretical optimum performance 



given by the Cramer-Rao bound, is not significantly affected by aliasing and it is not biased by white noise). However, PP 
performances quickly degrade by increasing WN. Recent studies show that already for WN - 0.17 the DFT-SME performs 
better than PP thanks to the lower sensitivity that DFT-SME has towards WN. Furthermore, the DFT-SME is more 
versatile when the Gaussian shape of the Doppler spectrum cannot be granted (such as is the case when Non Uniform 
Beam Filling occurs ). 

The DFT-SME algorithm can be implemented in several ways differing from each other for the noise handling approach, 
and the aliasing handling approach. As observed by Sirmans and Bumgardner the different approach adopted when 
implementing DFT-SME can affect significantly the expected performances. 

The mean velocity estimate through DFT technique can be expressed as: 

where Ss and SN are the signal and noise power, respectively, while i, is the estimated mean noise power and mol is an 
index corresponding to a first guess approximation a of the mean spectral frequency (i.e., m'o = . a M / PRF. 

The Doppler spectral width instead is calculated as follows: 

The first issue pertinent to the use of this technique is the approach to determine the initial guess index mo'. The simplest 
approach is to assume mol=& Three DFT-SME based on this approach are analyzed in ', they differ in terms of noise 
handling as follows: a first method (DFT-Z) does not remove any white noise contribution (Le., iN = 0 in Eqs. (5 )  and 

(6)). A second method (DFT-ZN) removes the nominal power (i.e., i, = S, ) in order to eliminate the bias due to white 
noise. A third method (DFT-ZT) cuts off all spectral lines with power density below a fixed threshold from the 
maximum. As shown in that paper, all of these approaches are very sensitive to the noise level: DlT-Z shows the smallest 
standard deviations c$v) but it is also significantly biased when v#O and SNR < 20dB, DFT-ZN instead is unbiased but 
its c$v) at low SNR's  are significantly degraded, DFT-ZT shows a behavior between the former two approaches. 

An unbiased version of DFT-Z was suggested by Zrnic : when the Doppler spectrum is narrow (e.g.,wN < 0.1) and M is 
large (e.g., M>lOOO), mo' can be chosen equal to the index of the sample with the largest power. That is, 
mb : i;n6 = max{jk 1 .  This version will be referred to as DFT-M. For the spacebome radar configuration in this study, 

however, neither of these two conditions applies. In fact besides the limitations on W N  discussed in Section 1, also the 
integration time TI = M Ts undergoes more stringent limitations than it would in the case of ground-based or airbome 
systems. This is due to the high antenna velocity (which sets issues of stationarity of the observed process and of 
scanning strategy). In practice M ranging between 32 and 512 can be adopted for spacebome applications. 

Recently, a two-step DFT approach (DFT-I) was devised which provides more stable estimates for spacebome 
applications. In the first step, Eq. (5 )  is applied with mo' = 0 and the first velocity guess $(I) is obtained. In the second 
step, the mo' is set equal to ~ ( 1 ) / ( - ~ / 2 M T ' )  and a new estimate is obtained. This second step is iterated until the 
estimate converges: in fact, it can be easily verified that Eq. (5 )  can be reduced to: 

where ml("=u(-")-sgn(-")M/2 and mz")=u(")-sgn(-")M/2. It follows that every further iteration of the second step 
requires only 1 real multiplication and less than M real sums. This does not change appreciably the computational 
efficiency of the SME-DFT. In practice, the iteration is stopped when the difference between the final estimate and the 
initial guess drops below the Doppler resolution D(2MTJ. 



3. DFT-SME PERFORMANCE ESTIMATION 
Performance predictors of the DFT-Z have been derived by Berger and Groginsky 9, however these equations hold only 
for narrow and zero-centered spectra. In this work a more generalized approach which applies to a wider range of spectra 
is derived starting from the work of Miller and Rochwrger lo. 

Let us define the aliased signal power spectrum SAM of the time windowed sequence: 

I 

where DM is the Fourier of the data window which is assumed unitary for convenience. The observed periodogram 
&f) is such that: 

p(f) =(F(f)) = s A ( f > + N ( f >  (9) 

f ( f> = ( S ( f ) )  = P(f) - fi(f> 

where < > indicates the expectation and Nu) = ShJ2fnt. The estimated signal power spectrum S ( f )  is therefore: 

(10) 

where 

Let: 

(f is the estimated noise power spectrum. 

where a is the initial guess of the central frequency, and: 

P(f) = F(f> - P(f) (12) 

Clearly E<Mfkd[pM]> = 0 for any k and a. Therefore we have the following expression for the moments of the 
estimated signal periodogram: 

which can be approximated at the second order of the expansion series for M~~)[pplf)] /M(~)[Scf)]  < 1 : 

A simpler expression can be obtained by omitting the high order terms O ( M ~ ( ~ ~ ) ( P ) ) :  

where, Ss = s, + sN - ,!?, = M , , , [ S ( f ) ]  and yk,, = M,,,,,[f(f)] / 3, are deterministic variables, while 

pk,, = M ( k , , , [ p ( f ) ]  are zero-mean random variables. 



3.1 

The expectation of the estimator in Eq. (5 )  is obtained starting from Eq. (14) with k=l: 

Statistics of the first spectral moment estimator 

( f c )  = a + Y1.a + E1.a 

where El,a is the expected value of the contribution of the second order terms of Eq. (14) and can be expressed as: 

this expression is strictly valid only for M +=, however it still holds if MT, is significantly smaller than the spectral 
width. 

Under the assumption that WN < 1/3 the aliased spectrum can be well approximated by the terms in Eq. (7) with i = - 
I , O , + l :  

in this case the integrals in Eqs. (16) and (17) can be solved analitically and the following expressions are obtained after 
removing a few negligible terms: 

where fc,a = f c  - a, is the offset of the true central frequency from the first guess a and: 

Pi fi Wi 

Table (2): Parameters to be used in Eq. (22) to get the 
expected standard deviation of the first moment 
estimates. 

A simple analytical expression for the variance of the first moment 
estimator estimator can be obtained when 
M~~Jpcfl]/M~~~[Scfl] << 1. In this case, Eq.(14) can be truncated at 
the first order and one obtains: 

which can be rewritten, following the same considerations applied 
to Eq. (17), as: 



Once again, this expression can be solved analytically for a spectrum as in Eq. (1 8): 

where the values of Pi , 
IjJ<fm-l. 7WN can be obtained: 

and wi are shown in Table 2. A more compact expression that holds for wN<0.2 and 

(24) 
where wN = wD / 2fm is the normalized spectral width. This expression matches exactely the well known result from Zrnic 
when f c  = a = 0 and the noise power is precisely known. However, this equation shows also the dependence on the 
central frequency and on its first guess. It can be noted that if fc,.n << f m  then Y l , e f c , a  Sd SE and the second term in the 
right-hand side of Eq. (23) can be written as: 

which is useful to quickly evaluate the impact of fc,a on the variance of the estimate when the spectrum is not affected by 
significan aliasing. 

3.2 

The statistics of the second central moment can be derived starting from Eq. (14): 

Statistics of the second spectral moment estimator 

Analytic expressions for the bias and standard deviation of the second central moment can be derived from Eq. (25) 
following the same approach used in Section 3.1. However this paper does not focus on the estimation of the second 
spectral moment. In fact, it may be noted from Eq. (1) and (8) that the spectral width is mainly determined by the satellite 
motion and by the data window. In general, retrieval of rainfall parameters (such as spread of the terminal velocities due 
to drop size distribution and turbulence) from low earth orbiting satellites gives rise to several issues independent on the 
performance of the SME. For this reason this paper focuses on the estimation of the first spectral moment. 
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3.3 Simulations 

Weather spectra have been simulated for differentf,, WN, SNR and M in order to a) veri@ the accuracy of the expressions 
obtained in Section 3.1 and b) compare the performances of the DFT-SME methods DFT-Z, DFT-ZN, DFT-M and 
DFT-I dicussed in Section 2. 

As shown in Fig. 1 the simulation is divided in two phases: in the first phase the weather signal expected power 
spectrum is synthesized assuming an ideal Pulse Repetition Frequency (PRFI) such that no aliasing occurs and a number 
of pulses MI and such that the frequency resolution PRFIMI << PRFM. In the second phase, noise and random 
fluctuation are introduced and a corresponding 'ideal' sequence of MI complex voltage samples separated by l/PRFl is 
generated as in '. The actual sequence of M complex voltage samples separated by 1PRF is then obtained by 
downsampling and applying a data window to the 'ideal' sequence. The simulated periodograms are obtained through 
DFT processing of the actual sequence and their spectral moments are calculated through SME-DFT. The second phase 
is repeated NMC times (here NMC = 10000) to obtain several independent realizations and calculate bias and standard 
deviation of the estimated spectral moments. 

Calculation of the 
Periodogram 

4. Results 

In this section the performances of DFT-Z, DFT-ZN, DFT-M and DFT-I in estimating the central frequency of the 
Doppler spectrum are analyzed and compared. For sake of generality all shown results refer to estimates of the 
normalized central frequency f~ = f, / PRF. Furthermore the convention of showing the standard deviation 
a C f " ) = [ ~ a ~ ~ ) ] " '  normalized by a factor M0' is adopted for easiness of comparison with other studies available in 
literature. Although the linear dependence of u(jJ on MO.' (see section 3.1) is not strictly respected for DFT-M for the 
reasons discussed below, the quantity M0' 0V;v) is almost invariant with M. 

Having focused this study on the effects of aliasing on the performances of DFT-SME, a parameter to quickly estimate 
the impact of aliasing was derived fiom Eq. (18): 

A threshold at &=0.05 is used to define when significant aliasing occurs. The corresponding threshold in terms of fN is 
f~ = 0.5 - 0 . 1 7 ~ ~ .  
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Fig. 2: Statistics of the estimates of the normalized central frequency&. Results of simulations with M = 64 are indicated by plus 
signs (WN = 0.1) and large circles (WN = 0.2), plot c also shows the standard deviation of DFT-ZN calculated from simulations with 
M = 512 (small circles). Values calculated through Eqs. (16) and (23) are shown with continuous lines (WN = 0.1) and dotted lines (WN = 
0.2). Performances (both simulated and predicted) of DFT-Z are shown in grey and those of DFT-ZN are shown in black. 

4.1 

The methods DFT-Z and DIT-ZN, first described in Section 2, are the simplest approaches to DFT-SME. It has been 
demonstrated * that their performances are equivalent for high S N R  (i.e., S N R  > 20dB), whereas for low S N R ' s ,  the 
former is biased towards zero and the latter shows significantly larger standard deviation of the estimate. These 
conclusions are confirmed by Figure 2 where the statistics offN estimates as obtained from DFT-Z (gray) and DFT-ZN 
(black) are shown for two levels of SNR, two spectral widths, and 0 5 f ~  c 0.5. Furthermore it can be noticed that the 
approach developed in Section 3.1 provides an extremely accurate assessment of biusu~) = c j N  >-fhr and standard 
deviation aV;v)=[vur(f~)]"' for both methods. Figs 2c and 2d show that the observed standard deviations differ from the 
theoretically predicted values at low S N R  and M = 64, in fact, in this case, the condition M~&plfl]/u,[Scf)] << 1 is not 
verified and Eq. (12) is not accurately approximated by truncating at the first order the expansion series. The discrepancy 
disappears for M = 512 (small circles in Fig 2c), for higher SNR, and when the noise power is not removed as in method 

In general, the performances of both methods deteriorate proportionally to the aliased portion of the spectrum. This is 
evident for the bias shown in Fig. 3: in particular, for DFT-ZN, EA E Ibiuslfnr)l. 

Performances of DFT-Z and DFT-ZN 

DFT-Z. 
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Fig. 3: Bias of DFT-Z and DFT-ZN vs. E,. Black lines of 
different styles indicate bias for DlT-Z at low SNR for different 
spectral widths. Bias for higher SNR and for DIT-ZN (all SNR's) 
are clustered around the b&(f~) = - line. 
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Fig. 4: Standard deviation of the first guess a obtained as in 
DlT-M (black) compared to the f~ corresponding to three EA 

values (grey). Thick black lines are obtained with M = 64, thin 
black lines are obtained with M = 256. 

4.2 Performances of DFT-M 
As discussed in Section 2, the DFT-M method aims at eliminating biases due to aliasing by initializing with a first guess 
of fN. Such method is highly effective for large M (Le., M =1024) and narrow spectra. Although its behavior cannot be 
predicted by the Perturbation Analysis ', the results of simulations prove that it is practically unbiased for < + (see 
Fig. 6b). However, Figs 4c and 4d show that the standard deviation of DFT-M estimates deteriorates, with respect to 
those from DFT-Z and DFT-ZN, for WN > 0.1. This is due to the fact that the standard deviation of of the first guess 01 

increases linearly with WN. In Figure 4, Ha) is compared to the offset of the center frequency that corresponds to mild 
( E ,  = ~g /2), significant ( E ,  = +) and heavy ( E ,  = ~ E Q )  aliasing, respectively. For instance, when WN = 0.2 and M = 64,we 
have that @a)=+ for low IjJ. This means that the first guess removes all aliasing only 66% of the time. The dependence 
of @a) on fc (see dash and dot lines) further increases this effect. Smaller @a) are obtained if larger M are used: it was 
observed that @a) =Ma' for 32 I M  I1024. 

4.3 Performances of DFT-I 
Figures 5,6 and 7 provide a general comparison of the results of simulations for the four DFT methods discussed in this 
paper. While DFT-ZN rejects only the bias from white noise, DFT-M and DFT-I are able to reduce also the bias due to 
aliasing. In particular, the latter of the two maintains an acceptable bias rejection for a wider range offN than DFT-M. 

The standard deviation of DFT-I is comparable to that of DFT-Z and that of DFT-ZN for all S N R  and wN and for a wide 
range offN. It can be noted, from Figs 6b and 6d, that DFT-I rejects the effects of aliasing better than the other methods 
by showing low bias and standard deviation for EA < 0.15, which corresponds tofN < 0.5 - wN,, On the other hand, it is 
clear from Fig. 6d that when EA > 0.1 the standard deviation of DFT-I estimates rises rapidly above that of DFT-Z and 
DFT-M estimates. However, also in the region of high EA, DFT-I performances are still acceptable considering that in the 
same conditions DFT-Z and DFT-ZN are heavily biased and DFT-M shows an even higher standard deviation. 
Furthermore, Fig. 7 is useful to interpret correctly the statistics calculated for EA > 0.1. Fig 7a shows the standard 
deviation calculated for all methods and for two differentfN. ForfN = 0 (black lines in plots a and b) WN) for DFT-M 
and DFT-I equals that of DIT-Z and DIT-ZN only for small WN. In the region of wider spectra DFT-M and DFT-I show 
"JN) larger than DFT-Z and DFT-ZN, while DFT-Z and DFT-ZN are, in general, affected by a significant bias. 

The effect of aliasing becomes more evident forfN = 0.4. As shown in Fig. 7% WN) rises sharply around wN = 0.03 for 
DFT-M and W N  = 0.1 for DFT-I. Above those thresholds WN) reaches extremely high values and shows only little 
sensitivity to S N R  (see gray lines in Fig 7b). This behaviour of ofj ,)  is easily explained by observing the histograms in 
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Fig 5: Comparison of bias (plots a and b) and standard deviation (plots c and d) of normalized central frequency estimates 
obtained with four Dm-SME approaches. All results are calculated from simulations with M = 64 and WN = 0.1 (grey) or WN = 0.2 
(black). 

Figs 7c and d: while the distribution of DFT-Z and DFT-ZN estimates are approximately Gaussian and significantly 
biased towards zero, DFT-M estimates are distributed accordingly to a bimodal distribution and also the distribution of 
DFT-I estimates shows secondary, weaker, modes. Note that the primary mode of the distribution is unbiased with 
respect to fN. The ‘bump’ around the secondary modes (the aliased portion of the primary ‘bump’) appear because of the 
uncertainties on the fisrt guess estimates off$, and could be corrected with more complex processing schemes. For DFT-I 
the secondary mode can be effectively removed by increasing M (e.g., forfN = 0.4, WN = 0.2 and SNR = 20, the secondary 
mode of DFT-I estimates disappears for M > 128), this is not true for DFT-M (due to the fact that @a) oc M”’). 

5. CONCLUSIONS 

Use of spacebome Doppler radars in low earth orbit to monitor the vertical velocity of rainfall requires the use of spectral 
moments estimators (SME) for spectra wider than those typically observed from ground-based and airborne Doppler 
precipitation radars. One of the most versatile family of spectral moment estimators (DFT-SME) is that based on the 
analysis of the whole spectrum obtained through Discrete Fourier Transform. However, the performances of such 
estimators vary considerably depending on the details of every specific approach. In this paper four approaches are 
studied, focusing on their performances in the intermediate range of normalized spectral widths wN between 0.1 and 0.3. 

A theoretical approach was developed to account for the effects of aliasing when deriving the bias and standard 
deviations of the estimates of the first spectral moment. The derived statistics are in excellent agreement with the results 
of simulations and they confirmed that the simplest ‘zero-centered’ approaches, namely DFT-Z and DFT-ZN, are not 
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Fig 6: Comparison of bias (plots a and b) and standard deviation (plots c and d) of normalized central frequency estimates 

obtained with four DFT-SME approaches. All results are calculated from simulations with M = 64 and WN = 0.1 (grey) or WN = 0.2 
(black). The parameter EA in abscissa is calculated through Eq. (27). 

suited for applications with wide spectra: both show large biases when wN = 0.2 even for small normalized central 
fiequenciesfN and high SNR's. 

Analysis of the statistics obtained through DlT-M revealed that also this approach, although effectively rejecting aliasing 
effects (and therefore providing unbiased estimates of fN with small standard deviation) for narrow spectra, is not suited 
for estimating f~ of wide spectra. In particular, it has been observed that the standard deviation of fN estimates is 
significantly larger than those of DFT-Z or DlT-ZN, and that the range offN that can be estimated with no bias is 
limited to a narrow region around zero. On the other hand, performances of DFT-I are overall satisfactory for wide 
spectra: estimates are basically unbiased (for high SNR's) and with standard deviations comparable to DFT-Z for a wide 
range of central frequencies (ie., YN k 0.5 - w~.). It is noted also that standard deviations of DFT-M and DFT-I estimates 
are not strictly proportional to because of the methods to obtain the initial guess, therefore the results discussed in 
this paper, calculated for M = 64, are only indicative for very different values of M. 
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Fig 7: Effect of aliasing on fN estimates by 4 SME-DFT approaches. Top: Normalized Standard deviation forfN = 0 (black) and 
f~ = 0.4 (gray) vs. spectral width (a) and vs. SNR (b). Bottom histograms  off^ estimates forfN = 0.4, WN = 0.2 and S N R  = 20dB for 
loo00 realizations. Under these conditions the distribution of DFT-M estimates is bimodal, and that of DFT-I also shows a large tail, 
while that of DFI‘-Z and DFT-ZN is fairly Gaussian but heavily biased. The loss of Gaussian shape accounts for the sharp increase in 
DFT-M (at wry = 0.03) and DFT-I (at WN = 0.1) standard deviations in plot a) forfN =0.4 (grey). 




