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ABSTRACT - A formation of satellites flying in deep space can be specified 
in terms of the relative satellite positions and absolute satellite orientations. 
The redundancy in the relative position specification generates a family of con- 
trol topologies with equivalent stability and reference tracking performance, one 
of which can be implemented without requiring communication between the 
spacecraft. A relative position design formulation is inherently unobservable, 
and a methodology f o r  circumventing this problem is presented. Additional 
redundancy in the control actuation space can be exploited f o r  feed-forward 
control of the formation centroid's location in space, or for  minimization of 
total fuel consumption. 

1 - INTRODUCTION 
The collective behavior of spacecraft flying in formation can be used to synthesize instruments 
of greater utility than could otherwise be achieved with a single spacecraft. One example, which 
motivates much of our work, is an interferometric imaging system composed of multiple space- 
craft. Several interferometric flight projects, based on formation flying, have been proposed 
and studied including Darwin [l], Terrestrial Planet Finder (TPF) [2] and StarLight [3]. 

We use the interferometric imaging application as a basis for discussing formation control 
problems which are applicable to a wider range of problems. Figure l a  illustrates a conceptual 
interferometric imaging configuration. Each spacecraft acts as a collector, reflecting light from 
the imaging source to a combiner spacecraft. The light from any two collectors is combined at a 
detector and, if the optical pathlengths are held k e d ,  an interference pattern is generated. Each 
measurement of the amplitude and phase of the mutual coherence between the two reflected 
light beams amounts to a sample of the spatial Fourier transform of the image. Multiple 
measurements gives sufficient data to allow reconstruction of the image. The advantage of 
imaging in this way is that the effective aperture depends on the collector separation. Future 
objectives call for separations of the order of kilometers, giving resolutions that cannot be 
matched by any monolithic spaceborne telescope. 

Our work focuses on deep space missions, in which the formation is in heliocentric orbit 
rather than earth orbit. In this scenario formation control problems ( e g  initialization, reori- 
entation, resizing, tracking, station keeping, etc.) can be specfied in terms of the tracking of 
relative spacecraft position and spacecraft attitude. We make some assumptions specifically 
tailored to deep space applications. The most significant of these is that the spacecraft can 
sense their relative position but not th.eir absolute position. 

The spacecraft in the formation are free flying and their dynamics are coupled only through 
the implementation of control to meet the application objectives. To maintain the performance 
of the formation it is necessary to maintain the relative position and absolute orientation of the 
spacecraft. Actuation for control purposes is performed on the individual spacecraft. 

There are many possible topologies for sensing, control, and communication within a form& 
tion. Communication bandwidths, synchronization constraints, and sensor capabilities affect 
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Fig. 1: a) Interferometric imaging configuration using multiple spacecraft in formation. b) 
Definition of the inertial and relative position variables. 

the performance of any chosen topology. These issues have been studied for various topolo- 
gies [4, 5, 6, 7, 8, 91. 

The work presented here emphasizes techniques that allow flexibility in the specification of 
the formation topology. This will ultimately allow us to develop formation systems that are 
robust to missing measurements, lost communication links, and, in some cases, faulty space- 
craft. Being able to switch between communicated and measured information also allows us to 
investigate the tradeoffs involved in implementing decentralized topologies. By decentralized 
topologies we mean those in which the communicated and/or measured information available to 
the spacecraft is only a subset of the full set of formation variables. See [lo] and the references 
therein for a discussion of decentralized control is spacecraft formations. 

Our prior work [ll] developed a characterization of the redundancy in a relative position 
based architecture and used this to construct algorithms for independently switching between 
measurements and communicated information on each spacecraft. The stability and equiva- 
lent performance of this approach was proven, and it was shown that there exists a topology 
achieving a global tracking objective which requires no communication between the spacecraft. 

We briefly review this prior work, and then proceed to develop a methodology for designing 
formation controllers based on relative position measurements. Under certain conditions it is 
possible to exploit a degree of freedom in the actuation in order to meet other formation ob- 
jectives. We provide a formulation for two such objectives: minimizing total fuel consumption; 
and maintaining the position and velocity of the formation centroid in inertial space. The for- 
mulation allows a wide range of design methods to be applied. We present one suitable method 
based on Linear Matrix Inequality (LMI) optimization. 

2 - FORMATION DEFINITION AND SENSING 
We begin by considering a typical formation and defining the notation associated with the var- 
ious inertial and relative position and attitude variables. Consider a formation of N spacecraft, 
and for simplicity it is suf€icient here to define on each a reference attitude, &, i = 1, . . . , N, 
(defined in any complete attitude parametrization) with respect to an inertially fixed direction, 

Each spacecraft is located at position pi = [xi, yi, zJT (the T superscript denotes trans- 
pose) within an inertial frame. The relative position between each two spacecraft is defined 



T T . .  . as, 
r .  %3 . = p j - p . -  2 -  [ x. 3 y .  3 2 .  3 ] - [ xi yi z i ]  , z ,3=1 ,  . . . ,  N , i # j .  

Naturally, ri,j = -rj,i, and in an N spacecraft formation there are N ( N  - 1)/2 relative three 
dimensional distances that can be defined modulo the opposite direction equivalences. Figure l b  
illustrates these definitions. 

In deep space, an accurate measurement of (xi, yi, zi) is not available. On the other hand, 
the rij variables can be precisely measured by a combination of radio frequency and laser 
metrology based sensors. In contrast to absolute position, spacecraft attitude can be measured 
to very high accuracy using standard on-board sensors. 

The formation is defined by the attitude of each spacecraft, {$i, i = 1, . . . , N } ,  and their 
relative positions {ri,j, i , j  = 1,. . . , N ,  i # j}. Accurate measurements of the these variables 
are available; an accurate measurement of the absolute location of the formation is not. There 
is some redundancy in the ri,j measurements as the N ( N  - 1)/2 relative positions are not 
independent. We exploit this redundancy in developing control topologies that do not require 
all relative positions to be measured. 

3 - FORMATION CONTROL 
3.1 - Attitude Control 
A formation geometry specification includes the attitude of each spacecraft, q5i, with respect 
to an inertial frame. In deep space mission applications, each spacecraft is assumed to have a 
local measurement of its attitude which gives the option of implementing strictly local attitude 
controllers. However, this may not be optimal with respect to the formation objectives during 
synchronized maneuvers and this issue will be investigated in future research. The focus of the 
current paper is the control of the relative positions, r i f .  

3.2 - Relative Position Control 
The full set of relative position measurements contain redundancies that can be expressed as 
algebraic constraints. For example, rij  + r j , k  + rk , i  = 0. For the formation to be well defined 
these constraints must also apply to the relative position commands. Note that analogous 
constraints also apply to the errors and disturbances. 

We express this constraint in the form, 

r1,2 

r1,3 

T N - ~ , N  

0 I 0 

and note that the matrix C is not full row rank. Therefore, there exists a matrix, M ,  satis- 
fying, [ rc2 rg-l,N ] M = 0. This is a convenient method of expressing the algebraic 
redundancies in the relative position measurements. 

4 - EQUIVALENT TOPOLOGIES 
We will use the redundancy characterized above to define a class of linear transformations 
that have the effect of removing specified relative measurements from the controller. These 
transformations are of the form H = I - X M T ,  where X is any matrix satisfying M T X  = 
I .  This has the effect of expressing some of the relative position measurements as linear 
combinations of the others. If we are given a controller K ,  designed to use all of the relative 
measurements, r ,  then the transformed controller, k = K H ,  uses only a subset of the relative 
position measurements. The particular subset depends on our choice of X .  It is not true that 
K H  = K .  Our prior work [ll] showed that KH has the same formation stability and tracking 
performance properties as the global controller K .  



This approach can be further generalized. The ith row of the operator K is the controller that 
spacecraft i must implement. We can define a different transformation, Hi, for each spacecraft 
and still maintain formation stability and performance. To formalize this, partition the identity 
matrix into q block diagonal pieces via, I = C:='=,EiET, where the vector Ei has only ones 
in the components whch define the ith partition. Now define the transformed controller via, 
K = EiETKHi, where the Hi are transformations of the form, Hi = I - Xiw. This 
has the effect of grouping the controller outputs into q disjoint groups, and applying a hfferent 
input transformation, Hi, to each. The formation stability using this K is proven in [ll]. 

4.1 - Local Relative Control Topology 
The analysis tools summarized above can be used to prove the existence of a particular topology 
for formation flying. We define this topology as follows. 

Definition 1 A control topology in which all actuation signals depend only on relative mea- 
surements with respect to  the actuation location is termed a local relative control topology. 

In our application this topology means that all control calculations can be performed locally, 
based only on local relative measurements. In other words, the calculation of the actuation for 
the ith spacecraft, ui, depends only on ri,j, j = 1,. . . , N ,  j # i. This topology is interesting in 
that it can be implemented without any communication between the spacecraft. See [ll] for a 
constructive proof that such a topology can always be constructed from any stable formation 
controller satisfying a global formation design objective. 

5 - FORMATION CONTROL DESIGN 
The above motivates us to consider the design of global formation controllers based only on 
relative position measurements, and we now study this aspect in detail. 

5.1 - Relative Position Based Formation Control 
We consider a linear, state-space description of the spacecraft dynamics, 

k = A z + B u ,  r = [  C 0 1  z. 

Because the spacecraft are not physically coupled, A and B have a sparse block structure. The 
output matrix, C,  gives the relative position measurements effectively coupling the spacecraft. 

The first obstacle to design is that the state, z, is not fully observable from the relative 
measurements, r .  Physically this arises from the fact that the position and velocity of the 
formation centroid cannot be determined by relative position measurements. To obviate this 
we use a similarity transformation of the state, Ta: = [ z u 1 ,  to give, 

where (C,,A,) is observable. We note that the observable part of the dynamics, 

v = A,v+ Bvu, r = Cvv,  

can be used to design a formation controller using relative position measurements. Various 
control design methods can be applied at this point. We present one based on LMI optimiza- 
tion [12] for estimator and state-feedback design. 

The state-feedback design problem is formulated in terms of finding a controller that drives 
all states within an initial ellipsoid, VO = { v I u*V,v < 1, V, = hT > 0}, to zero with a 
bounded cost given by, 

IIWvvIl; + IlWU~112" I Y2. 



. Note that we have chosen to independently penalize both the state error and the control action 
via the symmetric positive definite weighting matrices W, and W, respectively. Finding the 
minimum y clearly gives the optimal controller for solving this problem. The controller is given 
by the following LMI optimization problem. 

min y subject to: y > 0, Q = QT > 0,  
-Y,Q,Y 

-(QAF + A,Q + YTBT + B,Y) Q 

Y T  0 
and [ Q w,'w,-' 0 ] > O .  

w;1w;1 

The required state-feedback controller, u = Kv, is given by K = YQ-'. Note that the initial 
state ellipsoid Vo can be obtained by a transforming an ellipsoid in the original physical vari- 
ables, and the weighting matrices are directly associated with physically quantifiable objectives. 

The state, v, must be estimated from the relative position measurements, r .  Our formulation 
guarantees the observability of v and we can use a completely analogous dual LMI problem to 
design an estimator gain matrix, L. For brevity we omit the formulation details. 

5.2 - Reference tracking controller design 
We now construct a reference tracking controller from the above estimator/state-feedback design 
of L and K ,  that exploits the redundancy in the relative position reference command. 

We begin by using a singular value decomposition (SVD) to determine a (non-unique) matrix 
M satisfying MTr = 0. The SVD will give a representation for C, of the form, 

and M = U, is one suitable choice. Given a commanded relative position, Tcmd, we wish to find 
a matrix, Nr, that gives a desired stationary state, v, = Nr Tcmd, such that the system holds 
the commanded relative position vector (Le. c, v, = Tcmd). we exploit the fact that rcmd must 
specify a valid formation, i.e. MTrcmd = 0. 

These requirements can be shown to be equivalent to the conditions, A,Nr = 0 and C,Nr = 
( I  - M w ) .  Any Nr satisfying the equation, [ A: CT ] Nr = [ 0 I - MMT ] meets these 
requirements. The complete relative position reference tracking controller is now given by the 
st ate-space represent ation, 

w = [ A, +B,K+LC, ] w + [ -B,KNr -L ] 1 "rd 1 
where w is the controller state. 

5.3 - Exploiting Input Redundancies 
The linear model of an individual spacecraft's dynamics is essentially a double integrator. Force 
actuators-typically thrusters-are used for the control inputs, and these may have additional 
dynamics associated with them. If each spacecraft has zero order or identical first order ac- 
tuator dynamics, then the input control space contains an additional degree of freedom. Note 
that if the actuators are reasonably similar servo loops can be used to give each spacecraft 



equivalent actuation dynamics. We now demonstrate how this additional degree of freedom 
can be exploited to achieve other formation objectives. 

Under the above assumptions, B, has reduced column rank. The physical interpretation is 
that we need only control N - 1 of the spacecraft in order to control the relative positions of 
the formation. This means that there is a vector, BI ,  satisfying B,Bl = 0. An SVD can be 
used to calculate this vector, and we can define a projection, ( I  - BIBIT),  such that, 

&(I - B I B I ~ )  u = B, u and B,(I - BIBIT) u = 0. 

Note that the projected control input, ( I  - BIBIT) u, drives the observable state, v, in the 
intended manner, but does not directly drive the unobservable state, z ,  which contains the 
dynamics of the centroid of the formation. If A,, # 0 these may still be driven indirectly 
through the state v. Moreover, (A,,B,Bl) is controllable and any control signal of the form 
u = Blu drectly drives the z part of the state. We can therefore calculate control actuation 
signals of the form, 

which allow us to control the z and v components of the state independently. The input u 
controls the formation in the manner given in the previous sections and u can be considered 
as a control variable for the formation centroid (and other common unobservable states). We 
now give two relevant uses for this control. 
5.4 - Minimizing formation fuel consumption 
The control variable u can be chosen to minimize the total formation fuel use. At each time in- 
stant, given the formation actuation command u, we calculate u as the solution to the following 
linear program. 

i.i = ( I  - BIBIT) u + B l U ,  

N 

If actuator servo loops have been applied on each spacecraft then the ui represent commanded 
thrusts and these are only approximately equivalent to the fuel used on each spacecraft. Note 
that this approach minimizes the total formation fuel consumption for a given controlled ma- 
neuver. It is not necessarily a solution to the problem of finding the minimum fuel maneuver 
between specified formation configurations. 
5.5 - Control of the formation centroid 
We now consider the problem of using the variable u as a means of controlling the (unobservable) 
formation centroid. The dynamics of the unobservable state can be expressed as, 

By construction, (A,,B,Bl) is controllable. We again take the approach of separating this 
control problem into a estimator and state-feedback design. The lack of observability of z 
means that the estimator is now open-loop and given by the z dynamics above. 

Because v is a known-or estimated-quantity in the controller we pose the state feedback 
problem using knowledge of v. The controller then takes the form u = -K,i - K,,ij, where 2 
and 6 are the estimates of z and v respectively. 

To begin we augment the z dynamics with a fictitious noise n as follows. 



, Given that z is available only as an open-loop marginally stable estimate this is physically 
reasonable. It will also provide a means of tuning the control gains to accord more or less 
weight to the estimate of z. The objective is now specified as finding the minimum y such that 

This minimizes the 7-1, gain between the noise (n) and measured state (z) disturbing z ,  and 
the unobservable state ( z )  and the control effort (v). The symmetric positive definite weights, 
W, and W, allow the designer to trade between the relative importance of z and v and of z 
and n respectively. This problem is solved by the following LMI optimization. 

min y subject to: y > 0, Q = QT > 0, and, 
7 > Q J , K z v  

( X T B i  T T  B, + BzBIX - QAT - AZQ) (BZBLK,, - A,,) -I -XTWyT -Q 
(K2BlTBT - AT) Y 2 1  0 -K:WT 0 

0 -I 0 r"W,'Wn 0 
-w,x -W,Kz, 0 I 0 

-Q 0 0 0 I 

The feedback gains are K, = XQ-' and K,,. The unobservable state component of the 
controller can now be integrated into the previous reference tracking controller expressed below 
in terms of the controller required to run on the ith spacecraft. 

1 [:I A, - B,BLK, A,, + B,K - B,Bi(BiTK - K,,) [ i ]  = [ 0 A, + LC, + B,K 

Ho 0 ] [ 0 H j ]  [ rc :d] '  -BvKNT -L 
+ [ -B,(I-BLBiT)KN, 

[ i ]  ui = Ei [ -BlK, ( I  - BiBLT)K -BIK,, ] 

The H j  matrices define the input switching of the relative position measurements. These can 
be precalculated, Ho = I ,  HI = X1M1, . . . , Hj = I - X j q ,  and applied to switch between 
locally measured or communicated relative position measurements. The switching between the 
H j  measurement matrices can occur independently and asynchronously between the various 
spacecraft controllers. 

T h s  controller implements both control objectives (precise control of relative positions via 
state feedback on 6, and open-loop control of the formation centroid via feedback on both 2 
and 6) in a manner which ensures that the objectives do not interact. This approach could 
equally well be used to implement lower bandwidth and/or lower resolution feedback control 
of the formation centroid if a lower precision measurement of absolute position was available. 

6 - CONCLUSIONS 
Deep space formations can be defined in terms of the relative positions of all of the spacecraft, 
and in this paper we outline a method for using such a specification in the design of formation- 
wide control algorithms. The state-space decoupling approach given here allows for the design 
of controllers, using only relative position information, that achieve a formation-wide tracking 
objective. The controllers can be implemented in a decentralized manner, and each spacecraft 
can switch between various precalculated local measurement or communicated variable options 
for control. 



It is also possible to exploit an additional degree of freedom in the formation to allow for 
other objectives. Examples include minimizing formation fuel use, or maintaining the inertial 
position of the formation centroid. These objectives can be achieved in a manner whch does 
not interfere with the precise formation tracking control objectives. 
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