Fabrication and Testing of Advanced Thermoelectric Unicouples for Power Generation

presented at the

21st International Conference on Thermoelectrics

Long Beach, CA
August 2002

by
J. Sakamoto, J. Snyder, A. Zoltan., D. Zoltan and T. Caillat
Jet Propulsion Laboratory/California Institute of Technology
Pasadena, CA, USA
Program overview

- Engineering and testing
- Unicouple fabrication
- Modeling

- Materials Research
 - Develop high ZT materials
 - Materials synthesis
 - Improve thermal stability and compatibility

- High-efficiency prototype
Advanced Thermoelectrics DARPA & ONR effort at JPL

- Bulk materials
 - DARPA “Advanced Thermoelectrics” and ONR “Skutterudites”
 - Focus on TE materials for cooling and power generation up to 600-700°C
 - Identification, characterization and optimization of some new, promising materials
 - Skutterudites

![Diagram of Skutterudites structure]

La, Ce, Pr, Nd | Fe, Ru, Os, Co, Rh, Ir | P, As, Sb
Best ZT to date on new materials developed at JPL

- Combine best new material (Skutterudite) with the best SOA (BiTe)
State-of-the-art vs. advanced thermoelectric technology

- Projected performance is double SOA technology
Segmented legs: fabrication and testing

- **Segmented leg fabrication**
 - Uniaxial hot-pressing of powder stacked on top of each other
 - Temperature optimized → density close to theoretical value
 - In graphite dies and argon atmosphere
 - With metallic foil between segments
 - Selected to compensate for coefficient of thermal expansion mismatch
 - Diffusion barrier
 - Should react chemically with both materials to be bonded
 - Low electrical resistance bond (<10μΩcm²)
 - Metallic contacts at hot-side

- **Bond quality**
 - Electrical contact resistance measurement
 - Microprobe analysis
 - Diffusion
 - Chemical reaction and interface layer analysis

Segmented legs fabricated by uniaxial hot-pressing
In gradient, electrical contact resistance life tests on $\text{Bi}_2\text{Te}_{2.85}\text{Se}_{0.15}/\text{CoSb}_3$ segmented leg (n-type)

Demonstrated low electrical resistance contacts between $\text{Bi}_2\text{Te}_{2.85}\text{Se}_{0.15}$ and CoSb_3 segments
In gradient voltage output and resistance measurements for $\text{Bi}_2\text{Te}_{2.85}\text{Se}_{0.15}/\text{CoSb}_3$ segmented leg (n-type)

- Results validate thermoelectric properties of n-type CoSb_3 $\text{Bi}_2\text{Te}_{2.85}\text{Se}_{0.15}$ CoSb_3 segmented leg
- Confirms low electrical contact resistance between segments
In gradient electrical contact resistance life tests on $\text{Bi}_{0.4}\text{Sb}_{1.6}\text{Te}_3$/CeFe$_4Sb_{12}$ segmented leg (p-type)

- Demonstrated low electrical resistance contacts between $\text{Bi}_{0.4}\text{Sb}_{1.6}\text{Te}_3$ and CeFe$_4$Sb$_{12}$ segments
Temperature stability tests have identified Sb sublimation as the predominant material dissociation mechanism in dynamic vacuum.

- Cover gas suppresses Sb sublimation
Sol-gel silica coatings

- To prevent sublimation in vacuum; use coating similar to SiGe technology
- Sol-gel; dip coating SiO$_2$ method
- 1 coat: <500 nm
- Non-conductive and thermally insulating
- Stable < 900°C
- Improve coating quality by minimizing TE porosity
Sol-gel coatings suppress Sb sublimation

- Sample heated to 600°C/dynamic vacuum/72 hours
- Single coat provides good protection
Unicouple testing

Alignment pins

W Heater

p n

cold sink
Primary objective: demonstrate 15% efficiency to match predicted performance

Consistently achieve > 10% efficiency

Hot-side, contact resistance must be reduced

Achieved by optimizing braze material and method of brazing
Potential applications

- Thermal to Electric Power Generation
 - Integration with any heat source
 - Combustors
 - Catalytic reactors
 - Radioisotope heat source

- Waste heat recovery
 - Automobile exhaust
 - Supplement or replace electrical power generator with electrical power generated from engine waste heat
 - $T \sim 600$ to 700$^\circ$C available at the catalytic converter
 - ~ 1 kW power generator
 - Cost is critical
 - Power plants
 - Geothermal energy
 - Jet engines

- Solid State Advantage
 - No moving parts
 - No maintenance
 - Long life
Summary

- New segmented thermoelectric unicouples under development
 - Operating between 300 and ~ 1000K
 - Predicted efficiency up to 15%

- Unicouple fabrication and testing
 - Several segmented and non-segmented unicouples built for thermal and electrical testing
 - 10% thermal to electrical efficiency routinely demonstrated
 - Several engineering and processing challenges remain

Acknowledgement

- NASA, DARPA and ONR