
clear-forest-IND-article-0208 16-submitted-to-edittor 

CLEaR: Closed Loop Execution and Recovery - A Framework 
for Unified Planning and Execution 

Forest Fisher, Tara Estlin, Daniel Gaines, Steve Schaffer, Caroline Chouinard, Russell Knight 

Abstract 
Intelligent behavior for robotic agents requires a careful balance of fast reactions and deliberate 
consideration of long-term ramifications. The need for this balance is particularly acute in space 
applications, where hostile environments demand fast reactions, and remote locations dictate careful 
management of consumables that cannot be replenished. However, fast reactions typically require 
procedural representations with limited scope and handling long-term considerations in a general fashion 
is often computationally expensive. 

1 Introduction 
Robotic agents performing under hard resource and time constraints in uncertain environments require 
careful balancing of both deliberative and reactive reasoning [Knight, et al, 20011. As in most domains 
with uncertainty, a task may fail or produce unexpected results leading to plan failures. If the robot is 
also under hard time deadlines and resource constraints, a task requiring a different time or resource 
allocation than planned could cause failure at future points in the plan. In some cases, the robot may be 
able to retry a failed task, use more time or take up more of a resource without causing a problem. 

In our discussions, we will focus on the higher-level autonomy issues of balancing reaction and 
deliberation, and declarative and procedural representations in particular as they relate to planning and 
execution. 

2 Issues in Planning and Execution 
We define autonomy as the ability of a system to handle complex tasks involving environmental feedback 
without external intervention or supervision. Examples include the operation of free-flying robotic 
spacecraft for mapping and science observation missions, the operation of surface rovers on extra- 
terrestrial missions, and the tracking of spacecraft using ground communications stations. While there are 
many aspects of autonomy, we focus on issues arising from automated planning and scheduling in the 
context of real-time task execution. Aspects of autonomy we explore include system plan and task 
representation, system control, plan generation, plan execution, monitoring, and error handling. 

2.1 Knowledge Representation 
A complete autonomous system consists of hardware, software (engines) and models. For the purposes of 
this article, we will focus on software and models. Software and models may be defined either 
declaratively or procedurally. Software (e.g., a planning engine or task execution engine) provides the 
control information necessary to use the information provided by models. A model is the knowledge 
about a domain or situation. 

Procedural models represent domain knowledge by embedding it in a control stream. This is sometimes 
referred to as “arbitrary code.” It is often quite difficult to separate the control information from the 
domain information in procedural models. Declarative models are static representations about events, 
objects, and their relationships. The software required to use a declarative model may be quite complex; 
this is the topic of considerable Artificial Intelligence research. 

The tradeoff between procedural models and declarative models is that while procedural models can be 
quickly encoded for specific domains, conventional wisdom is that (compared to declarative models) 
procedural models are brittle and difficult to change. Declarative models do not commit to any particular 



clear-forest-IND-article-0208 16-submitted-to-edittor 

control path, and thus in theory can be more flexible with respect to uncertain and unknown events. 
However, the software that uses these models can be slow and often requires more computational 
resources than software using procedural models. 

2.2 Plan Generation and Execution 
Plan (and/or schedule) generation is the act of devising a set of actions (the plan) to realize a task or set of 
goals. In order to realize a task or achieve a goal, a system may use deliberation andor reaction. 
Deliberation is the process of producing a collection of executable sub-tasks that when executed result in 
the realization of tasks/goals. This collection of executable sub-tasks is referred to as a plan. Deliberation 
is the search required to find an appropriate plan and typically cannot guarantee finding a solution. 

Reaction is the act of producing the next executable sub-task required to achieve a task. Therefore, 
reactive systems generate a plan one step at a time, only generating the next step in the plan and waiting 
for the results before continuing. Reaction performs little or no search, and thus is able to provide a 
bounded time response. Reaction is a very powerful technique that deals well with real-time issues. 
However, reaction has the weakness that it may take harmful actions that result in suboptimal 
performance or even unnecessary failure because it does not perform look-ahead. Even though it makes 
its decisions locally without look-ahead, reaction still has many powerful capabilities such as the ability to 
respond to execution errors in a timely fashion through generic error handlers and task trees as well as the 
ability to synchronize multiple execution threads. 

The tradeoff between deliberation and reaction is that deliberation may require more resources (time and 
computation) than reaction, resulting in missed deadlines. Reaction may waste resources trying to achieve 
a task, and might not solve the problems associated with achieving a task at all. Further deliberation 
allows for plan optimization, and the ability to solve the problem within the global context of the robotic 
system and/or mission desires. We see the use of both techniques to achieve robust autonomy. 

Plan execution is the act of realizing a task given a plan. Technologies used for plan execution include 
(among others) execution software and mode identification. Execution software takes the representation 
of a plan and controls the hardware such that the tasks in the plan are achieved. Mode identification is the 
act of using sensor information and plan context to determine the state of the environment and the state of 
the autonomous system. The combination of execution software and mode identification allows plan 
execution to achieve tasks of a plan and to know that the tasks have been achieved. Likewise, failure to 
achieve a state can be known and reported back to the plan generation system. Reactive plan generation 
immediately provides a new task (probably very similar to the failed task) to be executed. If plan 
generation is deliberative, a new plan or revised plan is produced. 

We believe that declarative and procedural representations of models as well as deliberative and reactive 
plan generation are required for intelligent robotic systems. 

3 A Unified Planning and Execution System for High-Level Robotic 
Automation 

To address the issues outlined in the previous section, we have developed a system for high-level 
decision-making capabilities for future autonomous robotic missions. CLEaR (Closed-Loop Execution 
and Recovery) is currently comprised of two major components with hooks for a third: 

A Continuous Planner that provides capabilities for initial command sequence (plan) generation 
and continuously updating of that plan (Le., re-planning) based on changing operating context and 
goal information. 
A Reactive Task-Level Executive that provides task-level control capabilities for a robotic 
system, including execution and monitoring of the plan, as well as mediation between a planner 
and low-level robotic functionality. 

0 

0 



clear-forest-IND-article-0208 1 6-submitted-to-edittor 

Domain Specific Solvers: For example in the rover domain, a Global Path Planner that 
provides global path planning information about predicted routes to both the Planner and 
Executive is plugged into the framework. 

We will begin by first introducing the CLEaR framework for unified planning and execution, then give a 
more detailed description of the individual components the framework is comprised of, and then discuss 
how the framework addresses many of the issues presented. In the next section we will briefly describe 
how this framework has been used. 

3.1 CLEaR Framework 
The CLEaR unified planning and execution framework (Fisher, et al., 2002) was developed to pursue a 
tight integration of planning and execution capabilities. Currently, CLEaR is a hybrid controller system 
that is built on top of the CASPER (Continuous Activity Scheduling, Planning, Execution and Re- 
planning) continuous planner and the TDL (Task Description Language) executive system. CASPER 
provides a soft-real-time capability for performing plan generation, execution, monitoring and re- 
planning. Versions of the CLEaR framework have been demonstrated for Deep Space Network (DSN) 
antenna control (Fisher, et al., 2001), and planning and execution support for planetary rovers (Estlin, et 
al., 2002). 

CLEaR’s primary objective is to provide a tightly coupled approach to coordinating goal-driven and 
event-driven behavior. Many past approaches have followed a three-level architecture style where the 
planning and executive processes are treated as black box systems. This is in contrast to how CLEaR 
enables the planner and executive to interact with each other and more effectively share the responsibility 
for decision making. In part this is managed through shared plan information and continual updates of 
state being made available to both the planner and executive. CLEaR also provides heuristic support for 
deciding when certain plan conflicts should be handled by the planner vs. the executive. For instance if a 
rover gets off track during a traverse, the reaction of the planner and executive need to be coordinated. If 
the executive believes it can resolve the navigation delay within the original allotted time it will manage 
the plan changes, but once the executive identifies that the repair will require more time or resources than 
allotted by the planner, it will then allow the planner to use its global perspective to fix the problem. 

In Figure 1, we graphically depict the concept of shared responsibility in the plan modification process. 
In the bottom half of the figure the timelines depict states and resource being affected by the plan 
activities. In the top half of the figure the I-bars represent planning activities with the left edge of the bar 
representing its start-time and its lengtwsize depicting the duration of the activity. In this figure, time is 
advancing from left to right and is marked by the Current Time marker. As you move into the future (the 
right) the changing thickness of the wedges are depicting the decreasing responsibility of the executive 
and the increasing responsibility of the planner. 

3.1.1 CASPER Planner 
Planning in CLEaR is provided by the CASPER system (Chien, et al., 2000). Based on an input set of 
science goals and a rover’s current state, CASPER generates a sequence of activities that satisfies the 
goals while obeying relevant resource constraints and operations rules. Plans are produced by using an 
iterative repair algorithm that classifies conflicts and resolves them individually by performing one or 
more plan modifications. CASPER also monitors current rover state and the execution status of plan 
activities. As this information is acquired, CASPER updates future-plan projections. Based on this new 
information, new conflicts and/or opportunities may arise, requiring the planner to re-plan in order to 
accommodate the unexpected events. 



clear-forest-IND-article-0208 16-submitted-to-edittor 

3.1.2 TDL Executive 
Most executive functionality in CLEaR is performed by the TDL executive system (Simmons and 
Apfelbaum, 1998). TDL was designed to perform task-level control for robotic control and to mediate 
between a planning system and low-level robot control software. It expands abstract tasks into low-level 
commands, executes the commands, and monitors their execution. It also provides direct support for 
exception handling and the fine-grained synchronization of subtasks. TDL is implemented as an extension 
of C++ that simplifies the development of robot control programs by including explicit syntactic support 
for task-level control capabilities. It uses a construct called a task tree to describe the tree structure that is 
produced when tasks are broken down into low-level commands. 

3.1.3 An Instantiation of the CLEaR Framework 
Figure 2, depicts an instantiation of the CLEaR framework for a rover domain. In this instantiation the 
CASPER planner selects planning activities to be executed by the TDL executive, which intern 
commands the lower level robotic control software (CLARAty Functions1 Layer). As CLARAty carries 
out the commands, command status (in progress, completed, etc.), and vehicle state and resource updates 
are provided. This enables TDL to perform execution time monitoring of the tasks being performed. 
Similarly any of these updates that pertain to information being tracked in the planner include planning 
activity status is provided to the planner. CASPER then uses these updates to project the state of the 
agent forward in time. If these updates create inconstancies with the projected state, operations 
constraints, or mission planning goals then the plan is modified through replanning. In the rover domain 
the planner and executive both query a Path-Planner for information like distance between to locations. 
This information is used to sequence targets and provide estimates on how long traverses will take, which 
in part impacts the number of activities that can be placed into the plan. 

3.2 Unified Planning and Execution 
In general, it seems to be agreed that for automation tasks involving tight time constraints and hard 
resource and state constraints that both deliberative and reactive types of reasoning are necessary. To 
date, many approaches have combined the deliberative planning process and the reactive executive in a 
black-box fashion. This makes the tracking of planning constraints difficult for the executive to do during 
reactive execution of the plan. By unifying the planning and execution process the passing or access to 
constraint information is simplified. Although less work has been done to date on unifying the 
representation, this unified approach also reduces the need to duplicate system model information 
(hopefully reducing development time, modeling errors and difficulty of validation) in the planning and 
executive processes because both access the same runtime information. 

In section 2 we identified that a reactive approach can be short sighted, while a deliberative approach can 
be computationally expensive (time consuming). The use of the continuous planning approach enables 
CLEaR to replan more frequently thus solving smaller problems enabling the deliberative process to 
occur more quickly. CLEaR also attempts to identify the need to replan sooner by coupling the execution 
monitoring with the plan updates, and by doing simple reasoning in the executive to predict a likelihood 
of success or a need to replan. 

4 Applied Domains 

The CLEaR framework has been applied to primarily two domain areas: onboard decision-making for Mars surface 
exploration rovers, and Deep Space Network (DSN) ground station communication antenna station automation. To 
date both of these applications of the CLEaR framework have taken place under researcldtechnology development 
efforts here at JPL. 



clear-forest-IND-article-0208 1 6-submitted-to-edittor 

4. I Rovers: 
In conjunction with the CLARAty (Coupled-Layer Architecture for Robotic Autnomy) task (Volpe, et al., 2001), the 
CLEaR framework has been applied to provide the first instantiation of the CLARAty Decision-Layer (DL) (Estlin, 
et al., 2001). In this application CLEaR provides command sequence generation, execution, monitoring and 
onboard replanning of a rover, its science instruments and resources in an attempt to maximize science return based 
on a set of high-level goals (objectives) selected by a missiodscience team and the model describing the capabilities 
of the rover along with the operations constraints, which could include flight rules. This is in contrast to the current 
state-of-the-art practice where command sequences are generated on the ground and uploaded to the rover for 
execution, but there is little ability to adapt the sequence in response to unexpected events. In Figure 3, we show a 
picture of Rocky-7 and Rocky-8, the research rovers that our software has been applied to. In Figure 4, we show a 
set of science targets, rocks, a planned path and the actual path traversed to the science targets used during the 2001 
year end demonstration of the CLEaR software running as part of the CLARAty level one milestone. 

4.2 DSN: 
As a component of the Deep Space Station Controller (DSSC) or Common Automation Engine (CAE) technology 
demonstration effort, CLEaR is used to provide antenna station subsystem command sequence generation, 
execution, monitoring, and replanning to provide robust execution of downlink communication passes by 
configuration and commanding the appropriate subsystems. CLEaR generates and modifies the command sequence 
by dynamically piecing together smaller sequences in order to achieve the desired equipment state. This is in 
contrast to the current state-of-the-practice of executing static rigid sequences, which are not well adapt to 
unexpected situations like subsystem resets. In this application, CLEaR monitors the progress of the command 
sequence with the aid of a very capable fault detection and isolation (FDI) component that provides system wide 
monitoring and contributes to state estimation. In figure 5, we show a picture of a cluster of 34 meter Beam 
Waveguide antennas at Goldstone, CA. One of these antennas was usually the station used during the validation 
phases of the DSSC task. 

5 Acknowledgements 

The research described in this article was carried out at the Jet Propulsion Laboratory, California Institute of 
Technology, under a contract with the National Aeronautics and Space Administration. 

6 References 

Chien, S., Knight, R., Stechert, S., Sherwood, R., and Rabideau, G., “Using Iterative Repair to Improve 
Responsiveness of Planning and Scheduling,” Proceedings of the 5th Int’l Conference on Artificial Intelligence 
Planning and Scheduling, Breck-enridge, CO, April 2000. 

Estlin, T. Fisher, F., Gaines, D., Chouinard, C., Schaffer, S., and Nesnas, I., “Continuous Planning and Execution for 
an Autonomous Mars Rover,” 3rd International NASA Workshop on Planning and Scheduling for Space, Houston, 
Texas, October 2002 (to appear). 

Estlin, T., Volpe, R., Nesnas, I., Mutz, D., Fisher, F., Engelhardt, B., and Chien, S. “Decision-Making in a Robotic 
Architecture for Autonomy,” Proceedings of the Intl Symposium, on AI, Robotics and Automation for Space, 
Montreal, Canada, June 2001. 

Fisher, F., James, M., Paal, L., Engelhardt, B., “An Architecture for an Autonomous Ground Station Controller,” 
Proceedings of the 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001. 

F. Fisher, D. Gaines, T. Estlin, S. Schaffer, C. Chauinard, “CLEaR: A Framework for Balancing Deliberation and 
Reactive Control,” Proceedings of the AIPS On-line Planning and Scheduling Workshop, Toulouse, France, April 
2002 



clear-forest-IND-article-0208 1 6-submitted-to-edittor 

Knight, R., Fisher, F., Estlin, T., Engelhardt, B., and Chien, S., “Balancing Deliberation and Reaction, Planning and 
Execution for Space Robotic Applications,” In Proceedings of the IEEE International Conference on Intelligent 
Robots and Systems, Maui, Hawaii, Oct 2001. 

Nesnas, I., Volpe, R., Estlin, T., Das, H., Petras, R., and Mutz, D., “Toward Developing Reusable Software 
Components for Robotic Applications,” Proceedings of the Int’l Conference on Intelligent Robots and 
Systems,Maui, Hawaii, Nov 2001. 

Simmons, R. and Apfelbaum, D., “A Task Description Language for Robot Control,” Proceedings of the Intelligent 
Robots and Systems Conference, Vancouver, CA, October 1998. 

Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H., “The CLARAty Architecture for Robotic Autonomy,” 
Proceedings of the 2001 IEEE Aerospace Conference, Big Sky, Montana, March 2001. 




