< 3 JPL

und Software Systems

Automated Statechart
Model Checking

Dr. Erich Mikk & Paula Pingree
Wednesday, August 28, 2002
12:00 - 1:00 PM

Conference Room 167

e

rpn's Mranced Toohnology And St GBS Warburg Mams o o1 228

Lz Temrnd 17 Grens Explain Toe Atantagas §f Stasing Io Gne Mane B8

ORMATION

S LN

sy pnd pelting Buviass dala o L 4
Byaaets e wihey ol doelepens gt Bl
Hhis rsasan oy Touy bose e get il £

fg

Fattile's rovarand costioer et diie

Capads St ke R

Sutigins Sheel reandilent € sipiaed
et i weay S Qe s N0 S 258

28 August 2002

tion and Software Systems

SPL

Task Outline

Team:

Objectives:

Extend capabilities for flight
software verification by
introducing formal method model
checking

Evaluate and implement software
tools that will help to automate the
process

Apply method and tools to Fault
Protection (FP) flight software
(FSW) implemented in StateFlow®
statecharts as a prototype

Infuse this verification technology
in future projects

Paula J. Pingree (JPL), Lead

Systems Engineering & Technology Infusion
Group Autonomy & Control Section (345)

Erich Mikk (Erlangen, Germany),
Independent Consultant

Developer of Extended Hierarchical Automata
(EHA)

Gerard Holzmann,

Margaret Smith, Dennis Dams

(Bell Labs, Murray Hill, NJ),
Co-Investigators

Computer Principles Research Department

Funding:

$90K in FY02 (SQI & CSMISS)

28 August 2002

SPL

aaaaaaaaaaaaa

ion and Software Systems

How We Develop Flight Software

* Systems Engineers specify
FSW requirements

— Textual, informal

— Decomposition and
traceability may be
incomplete

— Schedule may require that
code development begin
before requirements are
finalized

What does
the code need

28 August 2002 4

JPL

.............. w [tion und Software Systems

How We Develop Flight Software

* Systems Engineers specify
FSW requirements

* Developers design the code
— Requirements are interpreted

— Derived requirements are
created

— Code reviews may be limited

28 August 2002 5

* Systems Engineers specify
FSW requirements

* Developers design the code

* Test Engineers develop
Test Cases & run Test
Procedures

— Human process prone to
inconsistency

— Limited resources (time, $,
personnel, testbeds)

Are there
bugs in
this code?

28 August 2002

» Systems Engineers specify
FSW requirements

* Developers design the code

» Test Engineers develop
Test Cases & Procedures

* Verification & Validation
results
— Some bugs are found & fixed

— Some bugs remain

28 August 2002

SPL

-i_ion and Software Systems

FSW Development Using Statecharts

« DSI”

Model-based code
generation of Fault
Protection (FP) Monitors
& Responses

Accomplished using
Stateflow® and Stateflow
Coder by The Mathworks

Highly successful
implementation

s “13th Technology”

\f

LNJNCH

canfigurs telosusnd
acthvale, sequencalialecomy,

hwansh! aniry:
Fi’ﬁ srm ‘\Im’i?!t,a N, TIMERE, etlipse Yimer,
on NOTIFICATIONS: WWA oy NI TRUE,

W i o s
= I?‘%}mgr?wd\ cenfiy:

pre deployment!

(Xz {H PR, START NOTHEICAT N, TIMERS,

[hassHimshag{lunch_contig?) § e daplapmint Uossats

Tl
mmc&né?mcéuwﬂf g2},

find ey
JUMP{sun, stangty. ssa);

subsiaadard NﬁI\J ephomaris” | ...
mb i% suspect” §

[naas findshad{aunsh_contil)

datisntie spateceal
GOTO{deturbla),

| has_finished{deturnbie))

ratiy w:wss).
ar,rz tmed o LA
fstandard MAY ephomeris” }

NOTIFCATIONT | NOTHCATIONT

7
RCRuirec Aty

T [eove on == TRUE | "sun is seen” |

3
{ *acy success” | macy timed od”)

VIMECUT { “positvs ielsase &

clection configuration
. GO%E) rondor response, ofgl: [S y

‘ { has,_finishemoniior, response o)

Sepioyment siatus™ |

axlta deployment dety

(o)
TIMEQLT

A section of the launch statechart, showing sun acquisition

~ and pre-deployment of the DS1 solar array panels.

28 August 2002

SPL

tware Systems

FSW Development Using Statecharts

* Benefits:
— Enforces standard diagrammatic conventions
— Allows design & implementation by Systems Engineers
— Provides concise design notation for easier review
— Open and customizable architecture exists for auto-
code generation
» Other Implementations in development:

— Deep Impact Fault Protection
— MDS Threading Policies

28 August 2002 9

[y

s i 1N S5
T RFHL EINE SSHIROAA YORAL, hdges 3oiss
SNERATNG s Bl
grecowr
— i
AN e
1 taacn toisgzi 1 R gk Tha
oy CooY
T "

* Validation of auto-generated code follows traditional testing
methods

— Iteration for bug fixes occurs downstream in development cycle
— Still never sure if bugs remain in design

* Can we take advantage of Model-based Validation Methods?

28 August 2002 10

SJPL

QSQI = Ce or Spa Information and Software Systems

A New Approach: Model Checking

* Apply “Lightweight” Formal Methods to FSW Validation

« Use the SPIN Model Checker
— Developed at Bell Labs by Dr. Gerard Holzmann

— SPIN can exhaustively examine the state space of a model and detect
violations of the user-specified properties, e.g. unreachable states

Traditional Statecharts Model Checking
Formal (LTL)

1

> Formal (Promela)

Requirements | Informal Informal

“Design Informal Semi-formal B

Code Formal Formal

28 August 2002 11

JPL

Applying Model Checking to FSW

* We provide automated :)
e fh h Domain Model Environment
translation ot the statechart (Statechart + C) Model

model from Stateflow to
Promela, the input modeling
language of SPIN

» Key Benefits:

— SPIN validation model and FSW
code, now both auto-generated,
have the same source (the

? (with counterexample)

Stateflow statechart)
— Validation of statechart design - | Correctness Properties
can occur earlier in development
cycle and without use of - Based on Requirements
valuable testbed resources - Expressed in Linear Temporal Logic (LTL)

28 August 2002 12

Code Generation for a Model Checker

Domain Model
(Statechart + C)

Environment
Model

»

F

(with counterexample)

Correctness Properties

- Based on Requirements

- Expressed in Linear Temporal Logic (LTL)

Generating code for a
model checker is different

* Which behavior we are going
to observe in the model
checker?

« What are the properties that
every model under
verification should satisfy?

* (Can we generalize the
semantics such that the
verification results hold even
if verification object or the
tools processing it change?

28 August 2002

13

...............

gsm YSVEENSEE. ... IPb

What is in the Step?

What would we like to rgj fw Do, BB I
observe on this statechart? A CE e o

entry Offaunch, configy,
CUHFPR STARY NOTIFICATION, TIMERY,
{nas tinished{iaunah, contig2) | pre, depbayiman:_timepaty

tmal mn!iguram-n
OTO(latnch ooafig2),

find soov :
Jum’{mn,shmﬁmma);
0)

“substandard NAY ephameris”

aﬁ) i suspwJ 31

1. Every action, i.e. state entries
and exits, variable changes, ...

A Sctess” |
“aing vaned out™
" stilysl [anda:.’iw\v aphamaris” |

2. Reaction to one "tick”

NOTIFICATEONT | NOTIRCATIONS

3. Complete system reaction to an
external trigger

7 [miGva, 00 == TRUE | "sun is seen” }

1 { "acy Sucoass’ § “acg tmed o’ §

2nid sun acquisitionf
A

| has. finishedtmonir, responsa cg) | - {"postiva rolaase &

There is no golden way ... \ T)
we have to keep it flexible

28 August 2002 14

Yl WA (e JPL

are Systems

Properties of Reactive Systems - Responsiveness

We adopt synchrony hypothesis due to G. Berry
1. Software system is infinitely faster than its environment
2. Software system is responsive

Responsiveness - software system reacts to every input from the
environment

This means among others:

(*) Software system accepts every environment input

(*) It executes at least one action or transition as a reaction

(*) It returns to the state where it can accept forthcoming input events
If our models are responsive:

1. No looping behavior
2. No non-reactions

28 August 2002 15

n und Software Systems

Non-Determinism as a Means of Generalization

Statetflow determines

(*) The execution order of AND-states

(*) The execution order of transitions emerging from one state
(*) The backtracking order of transition cascades

This means that system properties rely on the
1. Mutual positions of AND-states

2. The place where the emerging transition is attached at the
source transition

3.

28 August 2002 16

JPLU

n und Software Systems

Stateflow semantics: 1: A->B 2:A->C
Generalization: ml&2:A->Band A ->C

28 August 2002 17

Stateflow semantics: 1: A,B,D,C 2:A,B,C,D
Generalization: in 1& 2: all combinations of A, B, C, D

28 August 2002 18

Stateflow semantics: C2, C22, C21
Generalization: C2,C22,C21 and C2, C22, C1...

28 August 2002 19

ion und Software Systems

..............

Task Continuation

* Product Peer Review to be held in September
— Final Report on FY02 Task
— Tool Set and User’s Guide delivered

« R&TD Proposal submitted for FY03 ($400K):

“Rapid Adoption of Model-Based Validation for Mission-Critical
Flight Software Architectures & Domains”

— Recommended by the Advanced Software Technology and
Methods Initiative (ASTMI)

* Continued support in FY03 from SQI

— Tool maintenance and improvement
— Technology infusion for future projects

28 August 2002 20

v\ . ,j I -

.............. > ‘ &MAI&LQF”SI tor! are Systems

Technology Infusion - Make It Happen

« Potential Applications

— All projects using Stateflow or other statechart representations or
any other precise description of dynamic behavior

— Domains: Fault Protection (FP), Protocol validation...
— Supports software reuse

« Demonstrate relevance of increased software quality with
these tools and methods

— DSI1 prototype, Deep Impact FP
» Make tools available to JPL. community

28 August 2002 21

SPL

tion und Software Systems

References

P. Pingree, E. Mikk, G. Holzmann, M. Smith, D. Dams, Validation of Mission
Critical Software Design And Implementation Using Model Checking.
Accepted for the 21st Digital Avionics Systems Conference, October 2002
http://eis/~ppingree/pubs.html

E. Mikk, Semantics and Verification of Statecharts. PhD Thesis. Technical Report
of Christian-Albrechts-University in Kiel, October 2000

E. Mikk, Y. Lakhnech, M. Siegel and G. Holzmann, Implementing Statecharts in
PROMELA/SPIN. In Proceedings of the 2" IEEE Workshop on Industrial-

Strength Formal Specification Techniques. pages 90-101. IEEE Computer
Society 1999

G.J. Holzmann, The model checker Spin, IEEE Trans. on Software Eng.,
5(23):279-295, 1997

28 August 2002 22

http://eis/-ppingree/pubs

28 August 2002 23

Appendix-2

System Inputs Requirements
) LTL Correctness
Test Article
Fault Protection ~% Translation Tool Set
(FP) Response * mdl ": SfParse sf2hsa
Statecharts > translator
in StateFlow | | — ‘
___________ *.mdl i“.hsa * hsa [*.hsa
. A 4 \ 4
Environment hsa merge FP Response
Abstract / C functions
Spacecraft l*.hsa \
Model FP R h 4
Specification XL2HSA |* hsa hsa2pr COpOTSCS.Pr y,
in Excel converter »| translator S/C Model.pr >
SPIN
Abstract FP_Engine.pr
FP Engine
Verified <: System Output)
Design —_—
28 August 2002

24

