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SPL

Task Outline

Team:

Objectives:

Extend capabilities for flight
software verification by
introducing formal method model
checking

Evaluate and implement software
tools that will help to automate the
process

Apply method and tools to Fault
Protection (FP) flight software
(FSW) implemented in StateFlow®
statecharts as a prototype

Infuse this verification technology
in future projects

Paula J. Pingree (JPL), Lead

Systems Engineering & Technology Infusion
Group Autonomy & Control Section (345)

Erich Mikk (Erlangen, Germany),
Independent Consultant

Developer of Extended Hierarchical Automata
(EHA)

Gerard Holzmann,

Margaret Smith, Dennis Dams

(Bell Labs, Murray Hill, NJ),
Co-Investigators

Computer Principles Research Department

Funding:

$90K in FY02 (SQI & CSMISS)
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How We Develop Flight Software

* Systems Engineers specify
FSW requirements

— Textual, informal

— Decomposition and
traceability may be
incomplete

— Schedule may require that
code development begin
before requirements are
finalized

What does
the code need
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How We Develop Flight Software

* Systems Engineers specify
FSW requirements

* Developers design the code
— Requirements are interpreted

— Derived requirements are
created

— Code reviews may be limited
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* Systems Engineers specify
FSW requirements

* Developers design the code

* Test Engineers develop
Test Cases & run Test
Procedures

— Human process prone to
inconsistency

— Limited resources (time, $,
personnel, testbeds)

Are there
bugs in
this code?

28 August 2002




» Systems Engineers specify
FSW requirements

* Developers design the code

» Test Engineers develop
Test Cases & Procedures

* Verification & Validation
results
— Some bugs are found & fixed

— Some bugs remain
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FSW Development Using Statecharts

« DSI”

Model-based code
generation of Fault
Protection (FP) Monitors
& Responses

Accomplished using
Stateflow® and Stateflow
Coder by The Mathworks

Highly successful
implementation

s “13th Technology”
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FSW Development Using Statecharts

* Benefits:
— Enforces standard diagrammatic conventions
— Allows design & implementation by Systems Engineers
— Provides concise design notation for easier review
— Open and customizable architecture exists for auto-
code generation
» Other Implementations in development:

— Deep Impact Fault Protection
— MDS Threading Policies
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* Validation of auto-generated code follows traditional testing
methods

— Iteration for bug fixes occurs downstream in development cycle
— Still never sure if bugs remain in design

* Can we take advantage of Model-based Validation Methods?
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A New Approach: Model Checking

* Apply “Lightweight” Formal Methods to FSW Validation

« Use the SPIN Model Checker
— Developed at Bell Labs by Dr. Gerard Holzmann

— SPIN can exhaustively examine the state space of a model and detect
violations of the user-specified properties, e.g. unreachable states

Traditional  Statecharts Model Checking
Formal (LTL)

1

> Formal (Promela)

Requirements | Informal Informal

“Design Informal Semi-formal B

Code Formal Formal
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Applying Model Checking to FSW

* We provide automated : )
e fh h Domain Model Environment
translation ot the statechart (Statechart + C) Model

model from Stateflow to
Promela, the input modeling
language of SPIN

» Key Benefits:

— SPIN validation model and FSW
code, now both auto-generated,
have the same source (the

? (with counterexample)

Stateflow statechart)
— Validation of statechart design - | Correctness Properties
can occur earlier in development
cycle and without use of - Based on Requirements
valuable testbed resources - Expressed in Linear Temporal Logic (LTL)
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Code Generation for a Model Checker

Domain Model
(Statechart + C)

Environment
Model

»

F

(with counterexample)

Correctness Properties

- Based on Requirements

- Expressed in Linear Temporal Logic (LTL)

Generating code for a
model checker is different

* Which behavior we are going
to observe in the model
checker?

« What are the properties that
every model under
verification should satisfy?

* (Can we generalize the
semantics such that the
verification results hold even
if verification object or the
tools processing it change?

28 August 2002
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Properties of Reactive Systems - Responsiveness

We adopt synchrony hypothesis due to G. Berry
1. Software system is infinitely faster than its environment
2. Software system is responsive

Responsiveness - software system reacts to every input from the
environment

This means among others:

(*) Software system accepts every environment input

(*) It executes at least one action or transition as a reaction

(*) It returns to the state where it can accept forthcoming input events
If our models are responsive:

1.  No looping behavior
2. No non-reactions
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Non-Determinism as a Means of Generalization

Statetflow determines

(*) The execution order of AND-states

(*) The execution order of transitions emerging from one state
(*) The backtracking order of transition cascades

This means that system properties rely on the
1. Mutual positions of AND-states

2. The place where the emerging transition is attached at the
source transition

3.

28 August 2002 16
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Stateflow semantics: 1: A->B 2:A->C
Generalization: ml&2:A->Band A ->C
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Stateflow semantics: 1: A,B,D,C 2:A,B,C,D
Generalization: in 1& 2: all combinations of A, B, C, D
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Stateflow semantics: C2, C22, C21
Generalization: C2,C22,C21 and C2, C22, C1...
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Task Continuation

* Product Peer Review to be held in September
— Final Report on FY02 Task
— Tool Set and User’s Guide delivered

« R&TD Proposal submitted for FY03 ($400K):

“Rapid Adoption of Model-Based Validation for Mission-Critical
Flight Software Architectures & Domains”

— Recommended by the Advanced Software Technology and
Methods Initiative (ASTMI)

* Continued support in FY03 from SQI

— Tool maintenance and improvement
— Technology infusion for future projects

28 August 2002 20



v\ . ,j I -

.............. > ‘ &MAI&LQF”SI tor! are Systems

Technology Infusion - Make It Happen

« Potential Applications

— All projects using Stateflow or other statechart representations or
any other precise description of dynamic behavior

— Domains: Fault Protection (FP), Protocol validation...
— Supports software reuse

« Demonstrate relevance of increased software quality with
these tools and methods

— DSI1 prototype, Deep Impact FP
» Make tools available to JPL. community

28 August 2002 21
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System Inputs Requirements
) LTL Correctness
Test Article
Fault Protection ~% Translation Tool Set
(FP) Response * mdl ": SfParse sf2hsa
Statecharts > translator
in StateFlow | | — ‘
___________ *.mdl i“.hsa * hsa [*.hsa
. A 4 \ 4
Environment hsa merge FP Response
Abstract / C functions
Spacecraft l*.hsa \
Model FP R h 4
Specification XL2HSA |* hsa hsa2pr COpOTSCS.Pr y,
in Excel converter »| translator S/C Model.pr >
SPIN
Abstract FP_Engine.pr
FP Engine
Verified <: System Output )
Design —_—
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