Utilization of Integrated High-End Analysis and Design Tools in Real-Time Concurrent Design Environments

Presented
by
Dr. Knut I. Oxnevad
Jet Propulsion Laboratory
California Institute of Technology

at the
Thermal Fluid Analysis Workshop
Interdisciplinary Paper Session
University of Houston
Bayou Building, 2230
Clear Lake
August 13, 2002

The work described in this presentation was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

1. Challenge
2. Meeting the Challenge
3. The NPDT
4. Development Path
5. Capabilities/Research/Training
6. Future Plans

Oxnevad, K.I. 1
8/8/02
Contributing Organizations

Jet Propulsion Laboratory (JPL)/California Institute of Technology
 Mission Development
 Modeling and Simulation
 Payload Division
 Ground Operations
 Power
 Science
 Thermal
 Telecom
 Mars Rover Technology

Mars Program Office

NASA
 Code FT HQ
 Marshall
 Langley

NASDA
 Tsukuba Space Center

Stanford University, CA

Old Dominion University, VA
Track Record...

Real Missions: HYDROS, AQUARIUS, CARBON, Disturbance Reduction System (ST7), Loihi, etc...

Loihi

IIP/OSIRIS

Mars Outpost Rover

Concurrent Design Teams
Supported ~ 60 Studies
Over the Last 3 Years

DS (ST)-4/CIRCLE

Design Maturity Improvements: <10
Time Compression: <4

Oxnevad, K.I. 3
8/8/02
Goal!

Compressed Design Cycle & Improved Quality

Concept

Space System (HW/SW)

Oxnevad, K.J. 4
8/8/02
It's About...

DMT Chart

Concurrent Design Approach

Traditional Approach

ΔT for Given DM (Factors of 2-3)

Developed by K. I. Oxnevad (JPL) and Monique Lambert (Intel/Stanford)

ΔDM for Given T (Factors of 6-10)

Process

Real-Time

Concurrency

Analysis, Design, Sim.

People

Tools

Oxnevad, K.I, 5
8/8/02
The biggest Challenge facing Space Development today does not lie within a specific technology/discipline, but rather in our ability to make these technologies/disciplines work efficiently together to achieve our objectives.

We must find entirely new ways to achieve our objectives ------ Sean O’Keefe
A Historical Perspective

1000
- Design Complexity: Low
- Basis for Design Decisions: Experience
- Design Collaboration:

1500
- Design Complexity: Medium
- Basis for Design Decisions: Experience (H)
- Design Collaboration:

1950
- Design Complexity: High
- Basis for Design Decisions: Computations (L)
- Design Collaboration:

1995
- Design Complexity: Very High
- Basis for Design Decisions: Experience (VL)
- Design Collaboration:

Design and Analysis Approach

- Real Time
- Working Design Session
- Hands-On/"Touch and Feel"
- Designer and Builder the same

- Real Time
- Working Design Sessions
- Hands-On/"Touch and Feel"
- Designer and Builder Co-Located

- Off-Line
- Office Work
- Meetings
- Design Reduced to Drawings and No.
- Designers and Builders Separated
Working Design Sessions
Concurrent Design
Hands-On/"Touch and Feel"
Real Time Analysis and Design

- Real-Time Analyses, Design, and Simulations, using interconnected High-End SW Tools
- Hands-On/"Touch and Feel" from 3D representation of Design on Computer
- Powerful HW has made this approach possible
- Deliver mass, power, summaries, high-end analysis results, CAD drawings, and engineering Drawings
- Compress the full life cycle

- Numerical Analyses
- Spreadsheet Based
- Mass, Power, and Cost Summaries
In A Nut Shell

• Concurrent **Design** and **Analysis** Environment
• **Real-Time** Analysis and Design
• **Total Systems** Approach, Multi-Disciplinary Team
• Standing Design Team
• **Customer** Actively Participates in the Design Sessions
• Input Parameters are Challenged in Real-Time
• Involved External Experts in the Design Sessions
• Joint Sessions with other NASA Centers
• From Concept to Engineering Drawings

• **Interconnected, High-End** Optical, Microwave, Mechanical/CAD, Thermal, Structural, Dynamics, Simulation, Orbital, Electronics Analysis and Design Tools, such as Code V, ZeMax, Mechanical Desktop, (Inventor), NASTRAN, Thermal Desktop, Adams, MODTool, and visualNASTRAN + (PowerTool, Telecomm,, Avionics)

• Applications Utilize a **Common CAD Developed Geometry**
• Open Environment, import/export of STEP, NASTRAN files, etc., from/to JPL, other NASA centers, and Industry
• Technology Insertion Through Cooperation with MDL/TAP
• Analysis and Design Time Cut from Months to Weeks
The Steps...
Integrated, High-End Analysis and Design

Physical Optics, MODTool (HPC)

File Transfer
Ray Tracing, ZeMax/Code V

File Transfer

Def Data
NASTRAN

Mechanical, Mech Desktop

File Transfer

Rigid Body Dynamics, ADAMS

Structural Dynamics, NASTRAN

SC Concept Drawing

Hands-On/"Touch and Feel"

Thermal, Thermal Desktop

Def Data
MODTool

Def Data
ZeMax

Oxnevad, K.I., 14
8/8/02
Aquarius
Early Version
Sizing, Configuration, and Simulation

Mars Outpost
50km Fuel Cell Rover

Lander Configuration
Deployment Sequence
Surface Configuration

SURF 2001 Rover
(MSMS Rover Team)

Operational Scenario Simulation

Support: Mechanical (parts and assemblies), Structural, Surface Mobility/Ops Simulations, Trade Studies, Mass Summary

Oxnevad, K.1. 16
8/8/02
Concept, Hardware, Science Data

Support: Mechanical (parts and assemblies), Structural, Electronics, Optics, and Engineering Drawings
Mars Surface Mobility Studies
Mars Advanced Studies

Volcanology, MER Derivative

Polar Layer Deposit (PLD)

Fission Powered Polar Based Cryobot Lander Mission

Fission Powered Rover Mission

Images Courtesy Hovik Nazaryan and Guillermo Olarte

Oxnevad, K.I. 18
8/8/02
The Mars Surface Mobility Study (MSMS)
Team
Simulation/Virtual Testing

Trades
- Wheel Diameter
- Castor length
- Wheel Base
- Wheel plus rim
- Castor Mass
- Axelrod Mass
- Axel Mass

Tools Used
- Inventor
- visualNASTRAN

Images Courtesy Hovik Nazaryan and Guillermo Olarte

Oxnevad, K.I., 20
8/8/02
JPL's Mars Mission Analysis Tool (MMAPT) Included in Environment

Calculates, for a Given Location, Date, and Mission Power Profile:

- Solar Power Available
- Battery Charge and Voltage
- Solar Panels and Battery Sizes/Capacities

Plan to Introduce Avionics and Telecom Tools Later
CFD and Immersive 3D COTS Tools

Objective

Evaluate CFD and 3D Immersive Tools For use in a Real-Time Concurrent Design Environments

Evaluation and Recommendation Completed

Dr Tibor Balint, Assessment of Commercial Off the Shelf Computational Fluid Dynamics (COTS-CFD) Tools to Enhance the Concurrent Design Environment at NASA-JPL, JPL, May 2002

Yves Rubin, Using 3D Visualization and Virtual Reality to Enhance the Concurrent Design Environment at NASA-JPL, May 2002

Sample temperature distribution - CFdesign

Closeup Meshed probe - CFdesign

Immersive FEA design and analysis

IR coverage quality

Courtesy, Dr. Tibor Balint and Yves Rubin, 2002
People, Tools, Process Dynamics
Creative Collaboration and Transactive Memory

Investigator Ben Shaw (Royal College of Art, London)
Co-Investigator Monique Lambert (Stanford)

Objective
Create insight into the people, process, and tools dynamics to improve the design/development process.

Observational Studies Complete. Results Analysis in Progress

Images Courtesy, Ben Shaw, 2002
1. Concurrent Design Exercise
Let people from Cross-Centers experience working together as a team in a concurrent design environment, utilizing the concurrent design approach, including higher-end tools for develop a specific technology/project/mission.

- Relevant topics to be selected by Programs, Centers, or Enterprises.
- Such an experience possible at a Selected Design Centers: 5-7 days
- Process and Tools Training
- Learn to Live in a Concurrent Design Environment
 - Members and Leaders Training
 - History: SURF, University of Michigan (Mars Program)
Future Directions

• Develop an Art to Part Design Process for space vehicles (Concept to Hardware)
• Better Utilization of COTS tools in the Analysis, Design, and Simulation Areas
• Better Utilization of STEP
• Use of HPC (supercomputers, parallel computing systems)
 • CFD, Thermal, Structural
• Utilization of Concurrent Design Teams throughout the Design Process, and throughout the Organization
• Define, train, and set up of new Design Teams (JPL, NASA centers [MSFC, LaRC, NARC,], NASDA, industry, and academia [Stanford, MIT, University of Michigan])
• Develop a Weeklong Concurrent Design Training Class for NASA Engineers (NASA Code FT)
• Set up Workshops to Bring Focus on New Design Paradigms (http://nsd2001.jpl.nasa.gov)
• Develop Working Relationships with Academic Organizations / Initiate Research
 • Caltech (SURF, on-going)
 • International Space University (ISU)
 • MIT, Stanford, University of Irvine California, Pasadena Art Center, University of Southern California (TBD)
 • University of Michigan (April 2002)
• Port Concurrent Design Approaches to New Sectors
Create Happy Winners!
JPL

AUTHORIZATION FOR THE EXTERNAL RELEASE OF INFORMATION
Submit web-site URL or two copies of document with this form to Document Review, 111-120, or email them to docrev@list.jpl.nasa.gov.

LEAD JPL AUTHOR
Knut I. Oxnevad

MAIL ST O P
126-201

EXTENSION
4-3492

The Document Review approval process applies to all JPL information intended for unrestricted external release via print or electronic media. See explanations on page 3 of this form and the Distribute Knowledge documents available through http://dkm.e.

I. DOCUMENT AND PROJECT IDENTIFICATION—To be by Author/Originator.

☐ ABSTRACT (for publication) ☐ WEB SITE ☐ ORAL PRESENTATION
☐ FULL PAPER (including poster, video, CD-ROM) ☐ OTHER

TITLE
Utilization of Integrated High-End Analysis and Design Tools in Real-Time Concurrent Design Environments

OTHER AUTHORS

KEY WORDS FOR INDEXING (Separate items with commas)
Concurrent design, systems, concept-to-hardware

THIS WORK:
☐ Covers new technology not previously reported
☐ Covers work previously reported in New Technology Report (NTR) No.
☐ Provides more information for earlier NTR No(s).
☐ Contains no new technology

LEAD JPL AUTHOR'S SIGNATURE

DATE
8/7/2002

SECTION OR PROJECT LEVEL APPROVAL— I attest to the technical accuracy of this document/web site.
Mark Kordon

DATE
8/7/2002

ORIGINATING ORGANIZATION (Section, Project, or Element Number)

PERFORMING ORGANIZATION (If different)

ACCOUNT CODE OR TASK ORDER (For tracking purposes only)

101641-004.00.02

DOCUMENT NUMBER(S), RELEASE DATE(S)

DATE RECEIVED

DATE DUE

For presentations, documents, or other scientific/technical information to be externally published (including via electronic media), enter information—such as name, place, and date of conference; periodical or journal name; or book title and publisher—in the area below.

Web Site:
Pre clearance URL (JPL internal)

Post clearance URL (external)

☐ Brochure/Newsletter ☐ JPL Publication ☐ Assigned JPL Task ☐ Private Venture Publisher
☐ Journal Name ☐ Meeting Title Thermal and Fluids Analysis and Design Workshop 2002
☐ Meeting Date August 13, 2002 ☐ Location Clear Lake, Houston
☐ Sponsoring Society

If your document will not be part of a journal, meeting, or book publication (including a web-based publication), can we post the cleared, final version on the JPL worldwide Technical Report Server (TRS) and send it to the NASA Center for Aerospace Information (CASI)? ☐ Yes ☐ No

For more information on TRS/CASI, see http://techreports.jpl.nasa.gov and http://www.sti.nasa.gov.

If your document will be published, the published version will be posted on the TRS and sent to CASI.

III. NATIONAL SECURITY CLASSIFICATION

CHECK ONE (One of the five boxes denoting Security Classification must be checked.)
☐ SECRET ☐ SECRET RD ☐ CONFIDENTIAL ☐ CONFIDENTIAL RD ☐ UNCLASSIFIED

NASA EXPORT-CONTROLLED PROGRAM STI
☐ International Traffic in Arms Regulations (ITAR)
☐ Export Administration Regulations (EAR)

Export-Controlled Document – U.S. Munitions List (USML Category)

Export Control Classification Number (ECCN) from the Commerce Control List (CCL)