Operationalization and Enhancement of the Advanced Risk Reduction Tool (ARRT)

Presentation to the 2nd Annual NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Symposium (SAS)

Dr. Martin S. Feather
ARRT Center Initiative Lead*
Jet Propulsion Laboratory
California Institute of Technology

Martin.S.Feather@Jpl.Nasa.Gov
http://eis.jpl.nasa.gov/~mfeather

*Initiative began in 1999 with Dr. John Kelly as Lead
ARRT Acknowledgements

Heritage & Contributors
ARRT is inspired by, and based on:
JPLer Steve Cornford’s Defect Detection and Prevention (DDP)
and JPLer Tim Larson’s Risk Balancing Profiles (RBP).

contributors (JPL)
John Kelly
Burt Sigal
James Eddingfield
Steve Cornford
Phil Daggett
Julia Dunphy
Denise Howard
Chris Hartsough

contributors (other)
Jim Kiper (U. Miami, Ohio)
William Evanco (Drexel)
Steve Fickas (U. Oregon)
Martha Wetherholt (NASA Glenn)
Richard Hutchinson (Wofford, SC)

primary collaborators
Tim Menzies (NASA IV&V)
Tim Kurtz (NASA Glenn)
Peter In (Texas A&M)

funding, management & guidance
Work sponsored by the NASA Office of Safety and Mission Assurance
under the Software Assurance Research Program led by the NASA
Software IV&V Facility (Siamak Yassini, Marcus Fisher, Ken McGill). This
activity is managed locally at JPL through the Assurance and Technology
Program Office (Chuck Barnes).
Assurance activities "filter out" risk - Dr. Steve Cornford

"Risk as a Resource" - Dr. Michael Greenfield

overfiltered risk

unfiltered risk

MISSION FAILURE MODES

DESIGN RULES
MATERIALS SELECTION
ROBUST DESIGN

QML VENDORS
PROCESS CONTROLS

INSPECTIONS
VERIFICATIONS

RELIABILITY ANALYSES

SYSTEM TESTING
PERFORMANCE TESTING

MISSION SUCCESS ?

singly filtered risk
Those insights led to the DDP and RBP risk reduction tools and knowledge.

ARRT focus has been the application of DDP to Software Assurance Optimization
Software Estimation & Planning data: ARRT - Ask Pete collaboration

Ask Pete runs to gather project characteristics, make first cut at suggested selection of risk mitigations. *Mitigation selection passed to ARRT*

ARRT runs to allow user to assess risk, provide costs, customize to project (add/remove risks, refine effect values, etc.), tune selection accordingly. *Revised mitigation selection returned to Ask Pete*

Ask Pete runs to generate final reports

Tim Kurtz Tim.Kurtz@grc.nasa.gov
SAIC/NASA Glenn Research Center

http://osat-ext.grc.nasa.gov/rmo/pete/index.html

Principal Investigator: Martha Wetherholt; Phuoc Thai
Semi-automatic optimization: ARRT - TAR2 collaboration

- Optimization - automated search for (near) optimal mitigations suites
- Sensitivity analysis
 - On which data values do the results hinge?
- Retain human involvement
- Extends smoothly to more complex data

Dr. Tim Menzies tim@menzies.com
NASA/WVU IV&V Facility

http://tim.menzies.com
Assurance Optimization Goals

The selection of assurance activities such that:

For a given set of resources
(time, budget, personnel, test beds, mass, power, ...)
benefits are maximized

or

For a given set of objectives
(science return goals; on-time and in-budget development; 99+% expectation of successful landing)
costs are minimized.
What's Needed to do Assurance Optimization

1. A model to calculate assurance costs & benefits - we use Defect Detection and Prevention (DDP)

2. Data to populate the model - we populate with metrics from experience (when available) augmented with experts' best estimates

3. Optimization over the model - we use Menzies' TAR2 treatment learning system (confirmed using simulated annealing)
Assurance Costs & Benefits

Assurance activities have costs:
- Requirements inspections take skilled peoples' time
- Test-what-you-fly takes high-fidelity testbeds
- Radiation shielding takes mass and volume

Assurance activities have benefits:
- Requirements inspections may catch problems early, when it is inexpensive to fix them
- Test-what-you-fly may catches problems that would jeopardize the mission
- Bounds checking may decrease the frequency of switching into safe mode
DDP Cost/Benefit Model

Benefits = ∑ attainment of requirements

Costs = ∑ costs of selected assurance activities

Model holds *quantitative* measures of:
How much each risk impacts each requirement, and
How much each assurance activity reduces each risk.

Risks are crucial intermediaries in the model - requirements impacted by risks to differing extents assurance activities mitigate risks to differing extents.
A Populated DDP Dataset (Real Data from Experts)

32 requirements, 69 risks, 99 assurance activities
352 non-zero quantitative requirement-risk links
440 non-zero quantitative assurance-risk links
Each black point a randomly chosen selection of dataset's assurance activities. DDP used to calculate cost and benefit of each such selection.
Dataset after Optimization

Each white point is an optimized selection of dataset's assurance activities (33 critical ones are as directed by TAR2, other 66 chosen at random).

Menzies' TAR2 identified 33 most critical decisions: 21 of them assurance activities to perform 12 of them assurance activities to *not* perform.
Optimization confirmed using Simulated Annealing heuristic search ("cools" red-orange-yellow-green-blue)
Assurance Optimization
for more information:

Defect Detection and Prevention (DDP):

- Steven.L.Cornford@Jpl.Nasa.Gov

ARRT customization for software assurance:

- Martin.S.Feather@Jpl.Nasa.Gov

The research described in this presentation was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.