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Abstract 
In this paper we investigate the interaction 

between an orbiting tethered system and a single 
spacecraft acting as leader of the tethered formation. 
This problem arises when a distributed sensor array 
formed by a chain of tethered data-gathering vehicles 
is being commanded to reconfigure fi-om a remote 
location by the formation leader. Another example is a 
radar-mapping mission where multiple fiee-flying 
vehicles synthesize multiple radar apertures with the 
main tethered vehicle for increased coverage. In either 
case, a centralized control architecture distributes the 
information flow among the members of the sensor 
array. Our problem is different than conventional 
formation dynamics problems in that the presence of a 
tethered spacecraft within the formation requires an 
investigation of the coupling between spacecraft due to 
tether viscoelasticity. Examples from numerical 
simulation of an envisioned scenario in low Earth orbit 
close the paper, and demonstrate the utility of the 
model described to analyze similar problems. The 
results show that accuracy to the sub cm level or less in 
relative positioning and to the arc second level in 
relative angle can be achieved with this novel 
architecture. 

Keywords: Formation flying, autonomous control, 
tethered spacecraft, distributed spacecraft. 

Introduction 
The objective of this paper is to develop a novel 

concept to coordinate clustered cooperative 
heterogeneous vehicles (tethered and non-tethered) in 
orbit. One of the main arguments for utilizing satellite 
formation flight for imaging applications is the fact 
that large sensor apertures can be synthesized without 
the need for correspondingly large physical structures. 
But other advantages to formation flight are equally 

compelling: these include the capability of 
dynamically changing the formation geometry to 
respond to evolving mission sensing requirements or to 
adapt to multiple missions. 

-....___.-- 

Figure 1. Model of tethered spacecraft in formation 
(A+TI+B) with a separated leader spacecraft (C). 

This can be achieved in a unique manner by combining 
the advantages of tethered spacecraft technology 
(maintaining the orbiting tethered vehicles in the same 
orbit at varying tether lengths without fuel cost) and 
formation flying technology (spatially reconfiguring 
the li-ee-flying vehicles around the tethered craft on 
demand). Increased performance of spacecraft in 
planetary orbit formation can be achieved by 
combining (clustering) tethers deployed along the local 
vertical with free flier spacecraft flying in formation 
with the tether. 

Why bother with tethering spacecraft, if formation 
flying is already a promising technology? Tethers, 
although representing a high riskhigh benefit 
technology, have broad applications and can 
significantly alleviate a fuel budget for formations 
involving multiple cooperative vehicles. By acting as a 
large ultra-lightweight link between the tethered 
spacecraft, they enable the maintenance of very large 
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apertures at a fraction of the cost if the vehicles were to 
be maintained in close orbits by formation flying them 
as separated units. Being naturally gravity-gradient 
stabilized in virtue of their favorable moment of inertia 
distribution, tethered vehicles are ideal for planetary 
sensing. Finally, by spinning tether-connected 
vehicles with a very modest fuel penalty, an incredibly 
stable environment can be created which is virtually 
structurally noise fiee and thus ideal for optical 
instrumentation. 

Some examples of application follow. In a formation 
configuration acting as a planetary sensor web, several 
gravity-gradient stabilized tethered vehicles in 
formation respond to changes in magnetic field or 
upper atmospheric gradients (as an array of electric 
dipoles immersed in a varying electric field) while a 
separated spacecraft tracks and maintains formation 
cooperation of the sensing array. This scenario would 
apply in orbit around any planet in the Solar System. In 
a formation configuration for planetary 
surfacelsubsurface imaging, a long tether (could be 
kilometers long) and one fiee-flier spacecraft fly in 
formation, and provide stereoscopic images of the 
imaged ground object. Several fiee-fliers operating in 
the same fashion would allow an increased and 
simultaneous coverage of .  the targeted area. By 
reconfiguring this particular formation to a different 
spatial topology, the different baselines between the 
tethered spacecraft and the fiee-flier units in formation 
can be effectively rotated in space, thus covering 
ground spots at different locations and of different 
sizes simultaneously. This scenario would also apply 
in orbit around any planet in the Solar System. In a 
formation configuration for deep space interferometry 
(extra-solar planet detection and imaging), two or more 
tethered light collectors spin around the bore sight in a 
very stable arrangement, and the interferometer fiinges 
are formed at the fiee-flying light combiner, which, by 
moving around the tethered array, allows increased sky 
coverage. Finally, the constellation of fiee-flier 
spacecraft around the tether can act as the sensing 
array, while the tethered spacecraft can be considered 
as the information processing unit in virtue of its quasi- 
stationary (relative to the orbit) role enforced by 
gravity gradient stabilization. 

This paper considers the interaction between an 
orbiting tethered system and a single spacecraft acting 
as leader of the formation (Figure 1). In Figure 1, A 
and B are tethered together by the link TI, and 
spacecraft C is a fi-ee-flyer. Under the context of an 
orbiting formation definition as an ensemble of 
orbiting spacecraft performing a cooperative task, we 
point out that, until now, only spacecraft modeled as 
rigid bodies have been analyzed in the literature of 
orbiting formations and constellations. After the 
formation is in place, one may identify what is known 

as the virtual truss, i.e. the connection between the 
elements of the formation, which provides structural 
rigidity on account of the information flow between 
them. The virtual truss is specified by a visibility 
graph, which implements the connectivity in 
mathematical terms. 

Our problem is different than conventional 
formation dynamics problems in that the presence of a 
tethered spacecraft within the formation requires an 
investigation of the dynamics coupling between 
spacecraft caused by tether viscoelasticity. Therefore, 
the macro-dynamics of the formation3 due to the 
virtual truss is augmented by the micro-dynamics 
existing within the tether, namely longitudinal and 
lateral string dynamics. As such, this is a truly 
multiscale problem. 

We frst describe the model used for our analysis: 
a lumped mass approach to model tether dynamics, and 
models of various external perturbations acting on the 
system. Several vehicles are connected to and move 
along the tether, so that to reposition them the 
connecting tether links must vary in length. This 
feature enables distributed sensing at different spatial 
locations along the vertical (for a gravity-gradient 
stabilized tethered spacecraft). The control architecture 
features a separated spacecraft, which has visibility to 
the entire group of tethered vehicles, in the sense of the 
visibility graph. This vehicle is the leader of the 
formation, and ensures that the spacecraft on the tether 
remain connected and move according to a pre- 
specified program. The leader is also where the 
centralized estimator is located. This estimator 
continuously updates the state of the formation and 
estimates inter-spacecraft distance and bearing. 

In this paper we present both an analytical model, 
as well as a numerical model, to identify some of the 
properties of the system under investigation. The 
analytical model primarily serves the purpose of 
identifying the major features of the interaction 
between a fiee-flying rigid spacecraft and a distributed 
(tethered) orbiting structure. Some of these features 
are: macro-modes of deformation of the virtual truss, 
micro-modes of deformation of the distributed 
structure, architecture of the formation sensor, and 
sources of dynamical perturbation that need to be 
mitigated for precision operation in space (an example 
being space interferometry). 132,3 Examples fiom 
numerical simulation of an envisioned scenario in low 
Earth orbit close the paper, and demonstrate the utility 
of the model described to analyze similar problems. 

Tethered Formation Modeling 
In the following we describe some features of the 
model currently -implemented in our simulation code. 
The simulation is hybrid in the sense that it is part 
continuous (dynamics, commander, controller), part 
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discrete (sensing and estimation). The simulation 
environment possesses the following capabilities: 

- Orbital/Thermoelastodynamic analysis of a 
system of N spacecraft connected by one or 
more three-dimensional tethers. 
Realistic orbital parameters representative of 
LEO or Heliocentric orbit. A zooming orbital 
reference fiame approach, in which the local 
dynamics of the tethered system is referenced 
to a point, which tracks the reference orbital 
motion. This approach splits the dynamics in 
orbital with respect to inertial, and in local 
with respect to orbital. 
Viscoelastic tether. A critically tuned damper 
controls longitudinal oscillations. Tether 
thermal dynamics are also present. Tether 
dynamics represented by a finite number of 
lumped masses capable of large 
displacements. Variable tether length, 
commanded by varying the tether deployment 
and retraction rates at the end of each tether 
segment (assumes a point mass reel located 
on each spacecraft at the end of each tether). 

- Non-spherical gravity field (JO and 52 
harmonics of gravitational potential). Thermal 
perturbations (Sun thermavradiation input, 
Earth's infiared radiation, albedo). Dynamic 
atmospheric model (Jacchia 1977 model). 

- Attitude dynamics of each spacecraft (no 
structural flexibility is considered) with full 
actuation capabilities: Proportional Thruster- 
Based Reaction Control System and Reaction 
Wheel Based Pointing Control System. 
Each spacecraft is equipped with a sensor 
suite composed of IRU (Inertial reference 
Unit with accelerometers), Gyros, Star 
Tracker, AFF (Autonomous Formation Flying 
Sensor), and tether tension and length/length 
rate sensor. 

- 

- 

- 

Formation Dvnamics 
We follow Figure 1 .  The motion of the system is 
described with respect to a local vertical-local 
horizontal (LV-LH) orbiting reference fiame 
(x,y,z)=FoRF of origin OOw which rotates with mean 
motion 52 and orbital semi-major axis &. The orbital 
geometry at the initial time is defined in terms of its six 
orbital elements, and the orbital dynamics equation for 
point OoRF is propagated forward in time under the 
influence of the gravitational field of the primary 
(Earth for LEO, Sun for Deep Space applications) and 
of the Earth as a third body perturbation effect. The 
origin of this kame coincides with the initial position 
of the center of mass of the system, and the coordinate 
axes are z along the local vertical, x toward the flight 
direction, and y in the orbit normal direction. The 

inertial reference fiame (X,Y,Z)=FI is geocentric 
inertial for LEO (X points toward the vernal equinox, 
Z toward the North Pole, and Y completes the right 
handed reference fiame), and heliocentric inertial for 
other applications. The orbit of the origin of FoRF is 
defined by the six orbital elements a (semimajor axis), 
e (eccentricity), i (inclination), nL (longitude of 
ascending node), o (argument of perigee), v (true 
anomaly), and time of passage through periapsis. From 
Figure 1, the position vector of a generic structural 
point with respect to 0oRF is denoted by pi, and we 
have b=&+ pi. We define the state vector as X=(Ro, 

represent the quaternion and angular velocity vector of 
the i-th spacecraft with respect to FI. Suppose that the 
spacecraft can be modeled as rigid bodies, that is, no 
flexible structural modes are present. Assume further 
that the translation dynamics and the rotational 
dynamics are uncoupled. The kinematics equations are 
as follows: 

~ 0 ,  PI, ql, VI, ~ 1 ,  ~ 5 ,  95, ~ 5 ,  ~ 5 ) ~ 7  where qi and ai 

v, = p i  

mi =r(qi)ili 

W, =e, 

where T(qi) is the mapping fiom angular velocity 
vector to attitude parameters, and 8, are reaction wheel 
angles. 
The translation dynamics equations are: 

where: pi = relative position vector of body i wrt. 
OW, = rotation matrix of i-th body fiame wrt. 
inertial, R,, = orbital radius vector to origin of OW, 
R = orbital rate, R = rotation matrix of ORF to 
inertial fiame, fs = magnitude of solar force, ps = 
solar gravitational parameter, pE = Earth gravitational 
paramete~3.986005~10~~ m3/s2, fa = actuator force, 
mi = spacecraft mass with wheels added. 

The rotational dynamics equations are: 

h.  =-r 

(4) 
where mi = body angular rate, fs = magnitude of solar 
pressure, T~ = actuator torque, z, = wheel input torque, 
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Ji = spacecraft moment of inertia, hi = angular 
momentum of wheels, rqzcm = vector fiom center of 
mass to center of pressure of body i. 

Tether Dynamics 
The tether is modeled with N point masses 

connected by massless springs and viscous dampers. 
Each tether-connected spacecraft is modeled as a rigid 
body with internal angular momentum distribution, 
sensors and actuators, and mass/momentum flow 
representing the effect of the variable length tether. 

There are two possibilities to treat tether deployment 
and retraction with a lumped mass model: either the 
mass of the mass points is kept constant (and their 
number will vary, implying a mass creation and 
elimination procedure), or the number of mass points is 
kept constant (and their masses will vary). The first 
case, in which the number of mass points varies, is 
more complex than the second case, and requires a 
state vector of varying dimension which needs to be 
updated during the simulation. This approach may 
pose significant problems when state vector variables 
are received fiom the estimator and sent to the 
controller. Therefore, our model assumes that the 
number of mass points is fixed, and the varying length 
kinetics is included in the equations by the correct 
convective terms. Our approach makes use of a 
material coordinate s, which describes the arc-length of 
the tether in the undeformed configuration. Capital I 
and J denote the generic end masses, while lowercase i 
denotes tether points. Therefore, considering the tether 
segment Ti, connecting masses I and J, we have that at 
time t, O<slsI(t) defines the tether reeled in on the I-th 
spacecraft, s,(t)lsll,d defines the tether reeled in on 
the J-th spacecraft, and sI(t)5s< sJ(t) describes the 
deployed part of the tether. Figure 1 shows an example 
of this nomenclature. Clearly, sI(t) and sJ(t) are 
prescribed functions of time representing the 
deployment and retrieval profiles, and we have that the 
currently deployed tether length is l(t)= sJ(t)- sI(t). In 
FoW , the position vector of a generic tether point is 
defined by p(s,t). 

Let us change variables such that s(c,t)= sl(t)+c l(t) , 
so that p(s,t)=p(s(c,t),t)=r(c,t). Introducing the tether 
nodes &=((i-l)/(N-l)), i=l,...,N, the tether element is 
defined by 5i 5& &+l. Within this element, the average 
position pi(t)=( l/(AEJ)h(c,t)dc (where the integral is 
between 5i and and the mass m,(t)=pAs, where p is 
the tether mass density, represent the position vector 
and mass of the lumped mass model. After the material 
differentiation operator, which introduces the 
convective terms depending on the current tether 
length and length rate, the kinematics equations of the 
interior tether points may be written as (i=2, ..., N-1) 

and for the I-th end body 

where the <.> operator denotes a skew symmetric 
matrix. The dynamic equations of the interior tether 
point mass may be written as 

where r(5i7t)=(ri.l+ri)/2 and (dp(~i,t)/at)=(vi-l+vi)/2. 
This is a finite difference approximation of the tether 
partial differential equation. As such, large angle tether 
dynamics are correctly captured, and the 
approximation improves with the number of tether 
mass points. 

Finally, the tether thermal equilibrium is described 
by the first order differential equation 

DT/dt=(Q"l"+Qalbedo+Q*md -2xrosP)/( pcm) (8) 

where T is the tether temperature, Q[.] represents an 
input heat flux, r is the tether radius, o is Boltzmann's 
constant, E is the tether emissivity, p is the tether 
volume density, c is the tether heat capacity, and m is 
the tether mass. A longitudinal damper is added in 
series to the tether itself at one of the tether attachment 
points. This is a passive damper, critically tuned to the 
fi-equency of the tether bounce mode. An additional 
dynamic equation represents the linear momentum 

The total tether strain is 
balance Of the tuned damper as ktlt = k& + Cd(dld/dt). 

where lo is the tether rest length, lt is the tether 
mechanical stretch, ld is the damper mechanical stretch, 
and le is the tether thermal stretch. The strain rate for 
the tether segment of length lA, is 

so that the tether tension in the tether segment of 
length lA, with stifhess coefficient k and damping 
coefficient c, is 
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Control Model 
One goal of the optimal control problem is to 

maintain rigidity in the formation. Another goal may 
be to maintain rigidity while the free-flier spacecraft is 
"buzzing" around the deformable system. For a system 
with three masses, one objective may be to let the 
tethered spacecraft librate about the local vertical, 
while the free-flier spacecraft remains a fixed distance 
from the tether-connected ones. Defining the current 
separation vectors as hj=Q-rj and the desired values 
rl: and r13d, the translation error can be defined as 
E..=r.-r.d. 

B ?I 'J 

The above configuration defines a virtual truss that 
must be maintained as rigidly as possible throughout 
the formation. This virtual truss can be characterized 
by 3 relative constraints in each axis. We define the 
relative error in the translation constraints by 6, where 
i=O, 1,2. 

The problem of tethered formation flying spacecraft 
can now be cast as an optimal control problem. 
Suppose that the entire formation operates according to 
a leader-follower approach, where 1 and 2 are 
followers and 0 is the leader. A representative 
continuous time cost function associated with these 
formation constraints can be expressed by 

Jx=jp,)dt { s~Qxsx+(dsx/dt)TNx(dsx/dt)+u~Rxux} ( 14) 

Figure 2. System geometry for control. 

The objective is then to minimize the performance 
index 

f=jo,m)dt{ETRE+UTQU} (12) 

subject to the dynamics of the system, where E is the 
error vector, U is the control vector, and R and Q 
denote weighting matrices. 

The three-spacecraft tethered formation geometry 
depicted in Figure 2 requires that all spacecraft form a 
planar configuration. To define the planar 
configuration, an imaginary plane is constructed which 
forms the tether-attached frame. The direction cosine 
matrix of this tether-attached frame with respect to the 
inertial frame is composed of the following individual 
rotations G=R2(0)Rl($)Fo,, which can be derived 
from the tether in-plane angle 0, and the tether out-of- 
plane angle $. For a more general deformable body 
than a tether (such as a beam or shell), this C-attached 
frame can be defined as a co-rotational fiame, which in 
general rigidly translates and rotates with the body. 
The flexibility of the body itself is then defined by 
means of the stretch-related part of the deformation 
gradient, taking as a reference the rigidly rotated 
configuration. 

As before, define the coordinates of each spacecraft 
by Si(q,yi,~), where i=1,2,3. The coordinates of 1 and 
2 can expressed in terms of the coordinates of 
spacecraft 0 by 

(and similarly for the y and z axes, respectively) where 
(Qx,Qy,Q3 and (Nx,Ny,Nz) are the weighting matrices 
associated with the error states to be defined, (ux,uy,uz) 
are the translation forces, applied to each spacecraft 
that drive the error states along the three axes of 
motion, and (Rx,Ry,FQ are appropriate input weighting 
matrices to be determined. The entries of the positive 
definite matrix Qx are scaling factors that penalize 
error state deviations from zero to within specified 
requirements. Similar expressions can be given for 
(Nx,Ny,Nz) that penalizes the relative rate error 
between the neighboring spacecraft. Because of the 
problem symmetry and formulation simplicity, 
however, these matrices can be chosen to be identical 
and proportional to an identity matrix, that is 
N,=N,=N,=KI, where K >O. By construction, the error 
states describe the deviation of the constrained relative 
distance between each spacecraft 1 and 2 and the 
leader spacecraft. Therefore, the 1 and 2 must follow 
the leader spacecraft and maintain a pre-specified 
relative distance in each axis. Finally, we can also 
write Rx=Ry=Rz=l. The dynamic model for each 
spacecraft can be determined as derived in the first 
section of this paper as: 

dX/dt=A(X)X+BU (15) 

Further, let the desired trajectories along the three axis 
be denoted by xd, yd, and q. We can then write that the 
error vector is d&,/dtIT=x-xd. The continuous- 
time cost functions are equivalently expressed by (with 
H=diag( [Qx,NJ)) Jx = ~~o,m)dt{E~HEx+u~R,u,)  subject 
to eq. (15) with a configuration-dependent A matrix. 
The continuous-time LQR optimal control laws for the 
x-axis of each spacecraft is given by 
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u,=-R,-~B,TP,E, (16) 

where (P,,P;,P& are the solutions to the algebraic 
Riccati equations 

O=P,A+A~P,-P,BR;'B+H (17) 

and similarly for the other axes. The existence and 
uniqueness of the optimal control solutions are 
established under the usual controllability and 
observability conditions. The control forces are 
constructed based on the relative error in the states. 
This means that the formulation does not require 
absolute knowledge of the spacecraft states; instead, it 
is sufficient to express the spacecraft states in terms of 
the formation leader's states. 

Formation Commander 
The translation control actually implemented on the 

i-th spacecraft is of the form 

where I(pi and Kvi are translation control gain matrices, 
M' is the spacecraft mass matrix, pEai and PCmdi 
represent the estimated and commanded translation 
state, respectively. The rotational control instead is of 
the following form 

where rpi and rl are rotational control gain matrices, 
J' is the spacecraft moment of inertia matrix, h is the 
eigenaxis of rotation, 8, is the magnitude of rotation 
corresponding to the difference between the 
commanded and the estimated quaternion, and CD and a 
are the angular velocity and acceleration respectively. 
The desi.:? control forces and torques are 
subsequently fed to the thruster selection logic. The 
thruster selection logic features a nonlinear 
programming logic, which computes the desired on- 
time durations of all thrusters such that a weighted 
combination of force and torque errors (as differences 
between achievable and commanded) is minimized 
with the constraints of positive on-time. 

Formation Estimator 
A tether-attached fiame (xte, y,, qe) is defined as in 

Figure 3. In the example described below, it is used to 
speclfy the desired motion of the free-flyer with 
respect to the leader spacecrat (spacecraft 1). An 

estimator of the formation relative state is needed both 
in simulations as well as in real life because the control 
of the formation rigidity demands an accurate 
knowledge of the relative range and range rate between 
adjacent spacecraft. In this section we deal with the 
relative translation estimator only. 

XI 

=I 

Figure 3. Depiction of tether-attached frame, 
orbiting frame, and spacecraft attitude frames. The 
unit vector labeled umve represents the direction 
of motion of the free-flier during the maneuver. 

The current implementation of the translation 
estimator estimates only the relative position and 
velocity of adjacent spacecraft. This implies that the 
measurements used depend only on relative position 
and are not correlated to other system variables such as 
the attitude estimates of the spacecraft, or the 
misalignments between various subsystems. This 
assumption is acceptable only as long as the effects of 
these secondary disturbances are small compared to the 
errors in the relative position measurements (e.g. 
attitude estimate error is much less than metrology 
bearing measurement uncertainty). The metrology 
measurements are also assumed to be independent and 
uncorrelated between measurements, which implies 
that any common factor within the metrology 
subsystem have been removed, by calibration or 
estimation, in the internal processing. The radio- 
fiequency metrology subsystem (Autonomous 
Formation Flying sensor) collects from each formation 
element receiver data of range and phase, at each of 
three antennae, of signals from a transmitter to three 
receivers on each element. This represents six one-way 
links for each element pair. These six links provide an 
FW "truss" to determine the relative position and 
attitude of the two elements. Assuming that all the 
common errors in the system have been calibrated (or 
solved for) and attitude is known accurately fiom 
Attitude Estimation, each link in the "truss" can be 
viewed as an independent measurement of the relative 
position of the two elements. Previous analysis has 
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shown that the measurement accuracy can be 
characterized by independent range (along the line of 
sight) and bearing (2 degree of fi-eedom pointing 
normal to the line of sight) errors. Simulation of the 
AFF subsystem can be carried out on two levels, 
simulating individual RF links as input to an extensive 
processing algorithm or simulating the outputs of the 
process, the equivalent "truss" measurements. The 
latter is more suitable for a higher level system 
functional simulation where the subsystem low level 
sensor detail is not important. The perfect 
measurement is the vector difference of the "true" 
positions of the two elements of the formation, as 
defined by the simulation dynamics, and mapped to the 
coordinate system used by the Formation Estimator (if 
different than that used by the dynamics). The 
simulated output measurement vector is the perfect 
measurement plus an error vector randomly generated 
fi-om the population represented by the measurement 
covariance matrix, which is also an output. Three 
possible information flow architectures are depicted in 
Figure 4.2 

After measurement and estimation, the following 
input data is available to the Commander/Controller of 
the formation. For each spacecraft, we have: linear 
position, velocity, acceleration vectors, quaternion, 
angular velocity, angular acceleration vectors in 
relative bearing and bearing rate, relative range and 
range rate, all measured with respect to the vehicle's 
body fiame, the neighbor spacecraft body kame, and 
the inertial kame. The estimation of the attitude of 
each spacecraft is decentralized. Star tracker and gyro 
measurements at each Spacecraft are processed to give 
the spacecraft attitude relative to an inertial fiame. 
Accelerometer and relative position measurements in . 
the form of an AFF sensor are also available for the 
estimator. 

Figure 4. Three types of information flow. 

The measurement covariance matrix R is 
characterized by range and bearing (2dof) estimate 
uncertainties and has its principal axes aligned with the 
measurement vector. Define the vector v=ru where r is 
the range and u is the unit vector along the LOS, and 
let v, be the variance of range estimate%?, and vb be 
the variance of bearing estimate per axis=ob2. Then the 
measurement covariance matrix is R= vruuT+vd(l- 
uu'). A random vector fkom the population 
represented by R can be generated fiom independent, 
zero mean, unit variance random numbers, wi , by 

pmor=o,uy+(l-uuT). The estimator structure is as 
follows: 

r = y-Hx 

x+ = x+K r 
K = XH'(HXH'+R)-' 

X, = (I - KH) X. (I - K H ) ~  + KRK' 
(20) 

where r is the measurement residual, K is the extended 
Kalman filter gain, X is the estimator state covariance, 
x the estimator state, and the subscripts + (-) denote the 
state before or after update. Optical metrology 
measurements can be treated in the same way as the 
RF metrology described above. 
Consider the estimation of the relative position of two 

separated spacecraft in a geocentric orbit. 
Accelerometer and relative position measurements in 
the form of an AFF sensor are available. The relative 
acceleration in inertial coordinates between the center 
of mass of spacecraft 0 and spacecraft 1 is given by ai 
=ui/mi-udmo+w, where mo and m, are the masses of 
the two spacecraft and uo and ui are the applied forces 
to each of the spacecraft fiom sources such as 
thrusters, solar pressure, and gravity effects, and w 
represents kinematics terms perturbing the dynamical 
equation. The accelerometer measurements for one 
spacecraft are given in the accelerometer body fiame, 
and their sensor model includes accelerometer bias and 
measurement noise. The last equation can be used to 
propagate the relative state measurement in the 
estimator. 

This simplified form of the translation estimator 
contains only the relative (to the leader spacecraft) 
position and velocity vectors of the formation in an 
inertially fixed Reference Coordinate system. The 
measurements used to estimate the relative position 
also depend on other state variables that were assumed 
to be known well enough that their exclusion did not 
significantly change the position estimation. If those 
assumptions are not valid then those other states 
should be included in the estimator, significantly 
increasing the number of states to be estimated. Other 
state variables that might be included in the estimator 
are: Relative extemaVdisturbance accelerations (e.g. 
due to solar pressure); Accelerometer bias, alignment 
and scale factor; Attitude of all the elements of the 
formation; Attitude, rate, externaVdisturbance angular 
accelerations; Gyro bias, alignment and scale factor; 
Locatiodalignment errors of all sensors within each 
element; Star tracker, AFF antenna array, Optical 
Metrology components; AFF system internal 
systematic errors (Relative clock offsets, Differential 
phase measurement biases, multipath biases); Optical 
Metrology intemal systematic errors. Those states that 
can be considered constant for the duration of a set of 
observations (or the mission) can be solved for before 
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each observation (or once) in a system calibration with 
a separate, special purpose, estimator. These estimates 
of invariant states would be used as parameters in the 
estimator used to estimate the dynamic states during 
the observation period. Such calibrations usually 
require a series of maneuvers to make the states 
observable, but complete observability may still not be 
possible. 

Formation Metrolow Model 
The RF metrology (AFF) subsystem collects fiom 

each formation element receiver data of range and 
phase, at each of 3 antennae, of signals ffom a 
transmitter on each other element. These are six one- 
way links for each element pair. The 6 links provide an 
RF “truss” to determine the relative position and 
attitude of the two elements. Assuming that all the 
common errors in the system have been calibrated (or 
solved for) and attitude is known accurately fiom 
Attitude Estimation, each “truss” can be viewed as an 
independent measurement of the relative position of 
the two elements. Previous analysis has shown that the 
measurement accuracy can be characterized by 
independent range errors, along the line-of-sight 
(LOS), and bearing errors, with two degree of fieedom 
pointing normal to the LOS. Simulation of the AFF 
subsystem can be carried out on two levels, simulating 
individual RF links as input to an extensive processing 
algorithm or simulating the outputs of the process, the 
equivalent ‘’truss’’ measurements. The latter is more 
suitable for a higher-level system fimctional simulation 
where the subsystem low-level detail is not important. 

We call perfect measurement the vector difference 
of the “true” positions of two elements of the 
formation, as defined by the simulation dynamics, and 
mapped to the coordinate system used by the 
Formation Estimator. Conversely, we call simulated 
output measurement the perfect measurement plus an 
error vector randomly generated f?om the population 
represented by the measurement covariance matrix, 
which is also an output of this simulator. Previous 
analyses of the performance of the AFF estimate of the 
range and bearing between two formation elements has 
provided the following simplified approximations to 
the estimation accuracy. The assumptions of the sensor 
model are as follows. First, the attitude estimate 
accuracy is small with respect to required bearing 
accuracy. Second, the alignment between AFF and 
attitude sensors is well calibrated. Third, the AFF 
antenna locations with respect to SIC center of mass are 
well calibrated. Fourth, the AFF clock differences are 
well calibrated. Fifth, the AFF phase difference biases 
are well calibrated. AFF usually puts a large margin on 

6 ranges and 4 phase differences. The phase 
differences enhance bearing accuracy but not range. 
The accuracy of an estimate fiom one set of AFF 
measurements is approximately vrm,,=v46 and 
vk-,=2vPd(di2 + dj’) per axis, for the measurement 
fiom s/c-i to s/c-j, where d is a metric of the AFF 
receiver array size [meters] and may vary by element, 
v, is the variance of range measurements fiom the 
ranging code correlation=(lcn#, vph is the variance of 
phase measurements fiom carrier correlation ( 10pm)2. 

Numerical Simulation 
The parameters of the simulated prototype problem 

are as follows. The initial relative Coordinates (in 
meters) of Si, i=l, ..., 3 in the ORF are Sl(x=- 

and 
S3(x=0,y=0;z=+500). The coordinates above define a 
virtual formation that is to be maintained throughout 
the flight. The system is initially in a 800 km altitude 
orbit. Spacecraft masses are 100 kg. Ideal thrusters are 
present, with no thruster quantization effects. A set of 
12 thrusters is mounted on each spacecraft, to provide 
full attitude and translation control authority in all 
directions. The tether is 960 meters long, with a 10 
meter long moment arm to each connected spacecraft. 
Solar pressure, gravity gradient and aerodynamic drag 
are present in the simulation. As in ’, a longitudinal 
damper is placed to dissipate most of the energy on the 
first tether longitudinal mode. 
The commander issues commands to each spacecraft 
as follows: 

- The fiee-flyer spacecraft (indexed 0) is 
commanded to move along the moving umove 
vector from time tl=10 seconds to time t2=230 
seconds. After that, it is required to track the 
attitude of the tethered spacecraft by 
remaining at the final distance achieved with 
the first maneuver. 

- Spacecraft 1 is not actuated, and acts as 
formation leader. 

- Spacecraft 2 is required to maintain the same 
inertial attitude as spacecraft 1. 

Figure 5 shows the command profile and its time 
derivative adopted for the present study. The profile is 
a function of time of f(t)=(3?T-2t3)/T3 varying from 0 
at t = 0 to a normalized value of 1 at t = T. The 
command is issued in inertial coordinates. Defining by 
PHdf the average inertial location of the midpoint 
between the two tether-connected masses, and by qtether 
the attitude quaternion of the tether-attached fiame, the 
commanded inertial position, velocity and acceleration 
of the fiee-flyer can be written as: 

25O,y=O;z=O), s~(x=o,y=o;z=-5oo), 

this due to other noise, e.g.mult$ath. Obs&vatio& are 
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rCmd =%-OR @'PIfu@ @%-OR +%ether @(PO + d ( t ) u m ) @ % t h e r  

rCmd =%-OR @'Hay @qI-OR+%tkher @(PO + h ( t ) u m ) @ % h e ,  

rCmd =%-OR @'Ifuy @%-OR ' q t e t h e r  @(PO + d ( t ) u m v e )  @%ether 

(21) 
where 8 denotes quaternion multiplication, the hat 
denotes quaternion conjugate, q1 OR is the quaternion 
fiom ORF to inertial, po is the initial position of the 
fiee-flyer in ORF, and d(t) is the maneuver profile as 
in Figure 5 .  The tether-attached frame has a 
quatemion qkaer fiom inertial to tether-attached frame 
associated with the rotation tensor 

OESt=atan2(x2 1 (I), x2 l(3)) (22) 

where x21 is the vector directed through the two-tether- 
connected masses and estimated form their current 
inertial location using output of the formation 
estimator, and i=1,2,3 denote its inertial components. 

Figures 15 and 16 show the force levels on two sets of 
thrusters during the maneuver, and Figure 17 shows 
the free-flyer fuel consumption vs. time. 

Conclusions 
In this paper we have investigated, for the first 

time, the dynamics, control, and estimation problem 
for a formation flying spacecraft composed of 3 
bodies, two of which are tether-connected. This is a 
prototype problem, representing an example of more 
general hybrid tethered and non-tethered formations. 
Applications of such concept are envisioned in the 
areas of astrophysical imaging in optical wavelengths, 
as well as precision Earth observing imaging. The 
feasibility and design of a centralized 
command/control/estimation system to enable 
formation flying of spacecraft with one free flying 
optical module and two tethered spacecraft has been 
presented. The analysis includes the dynamics model 
in a low orbital environment, formation flying 
estimation, and control design with metrology and 
actuator models. The excellent precision performance 
of the system in the arc-seconds range and centimeter 
level during a retargeting maneuver was demonstrated 
by numerical simulation. 

Figure 5. Depiction of commanded profile of 
intended repositioning of the free-flier in orbital 
plane. 

Figure 6 depicts the overall simulation architecture, 
featuring the commander, controller, estimator, 
dynamics, and sensor and actuator models. Figures 7 
and 8 show the tether temperature and the tether 
tension vs. time, and Figure 9 shows the tether in-plane 
angle rate vs. time. Figure 10 depicts the free-flyer 
angular error and Figure 11 the fkee-flyer position error 
during the commanded maneuver. It is evident that 
accuracy to the sub cm level or less in relative 
positioning and to the arc second level in relative angle 
can be achieved with this architecture and model. 
Figure 12 shows the attitude error of spacecraft 
number 2, which is required to track the attitude of 
spacecraft number 1 only. Figures 13 and 14 depict the 
tether strain and damper length respectively. Finally, 
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Figure 13. Tether strain vs. time. 
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Figure 15. Force in Thrusters 1,4,7,10 vs. time. 
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Figure 17. Free-flyer fuel consumption vs. time. 
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