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Image-Based Wavefront Sensing and
Control Experiments
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Modes and Algorithms

Government Baseline WFS&C System [NGST Performance - |Demonstrated in the Lab |TRL

Coarse Alignment

Capture 4
Coarse Align 10 um 10 um 4
Segment Figure |WFS/Prescription 25um/ | <10nm/ 7
Correction Retrieval segment segment
WFS/High Dynamic| 25um/ <10 nm/ 7
Range MGS: segment segment
‘ <100 nm/
WFC segment 4
Phasi :
Coarse Phasing Dispersed-Fringe Segment 1 um piston 100 nm
Sensi depth of 50 um , 4
ensing ; error piston error
ocus
White-Light : 10 nm piston 20 nm piston
Interferometry 10um error 5 um error 4
SM Align WFS/Prescription 3
Retrieval
Fine Phasing WFS/MGS Sum <10 nm 3 um 4 nm WFSE 7
WFC 5um <100 nm 3um 20 nm 4
Actuator
Calibration WFS/MGS <10.nm 2nm 4
Camera-specific
WFE Calibration |WFS/MGS <10 nm 4 nm WFSE 2
PSF Monitoring  (IPO/Prescription <10 nm 6 nm 4

Retrieval




NGST baseline WF control approach has several modes of
operation (see also paper [4850-49]). Telescope initialization,
performed at first light, cascades from Capture through Fine
Phasing, reducing errors from millimeters to nanometers.
Calibration of the science instruments establishes the separate
instrument WF errors and defines the global WFC set points.
PSF Monitoring will monitor the evolution of the WF error

during science operations, to determine when Fine Phasing may
need to be repeated.

Experiments shown here illustrate performance of several of
these modes.




Hardware

The WCT-1 and -2 testbeds provide small-scale hardware
analogs of NGST for WFS&C development, see[4850-55]. The
NGST Phase Retrieval Camera provides portable WFS
capability for testing large optics, see [4850-61]. A new
testbed for the Terrestial Planet Finder mission with extreme
WFC accuracy capabilities is coming on line, see [4854-41].
Experience with these testbeds validates our computer
modeling methods, which are applied to simulate the NGST
space observatory configurations.




Coarse Alignment/Segment Focusing in

Presence of Large Guiding Errors

Fang Shi

Initial telescope Coarse Alignment control uses a Segment Focusing
algorithm, which scans the segments to find best focus. Nominally, this
step will be performed with the Fine Guidance System running, keeping
the telescope pointed to a small fraction of an arcsecond. This
experiment examines performance in the unlikely event that Fine
Guidance is not active during Segment Focusing. It uses simulated

“Nexus” star images; Nexus was a small, 3-segment version of NGST
studied as a potential precursor mission.

The focusing algorithm optimizes a "minimum FWHM" metric, rather
than the usual "encircled energy,” when drift is large. This metric

provides accurate guidance even when the PSFs are smeared out into
snaky tracks.




Focusing Correction Under Nexus Jitters
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Dispersed-Fringe Sensing at Low Light

Levels

Fang Shi
Initial telescope Coarse Phasing control uses a Dispersed-Fringe
Sensor (DFS) algorithm operating on spectra from the NIRcam to
measure segment piston errors. The spectra are obtained using a grism
slotted in a filter wheel. The spectrum of an un-phased segment is an
interference fringe, with peaks where the wavelength is coherent with
the piston difference, and nulls where it is anti-coherent. The period
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of the fringe gives the absolute value of the piston 6L, and the slope
of the dark band indicates the sign of 6L.




This experiment uses WCT-2 to explore the accuracy of DFS at low
light levels. Exposure was adjusted using neutral density filters and

short exposure times.

The lowest light level
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Simulations were carried out using the Nexus NGST precursor mission
configuration, with meter-class segments, for comparison with the

WCT-2 experiments.

The limiting magnitude for
Nexus DFS to reliably detect
a 200 nm piston error with

exposure times of 1 sec were:

K7V star: M, < 13 mag
*AQV star: M < 14 mag

Longer exposures increase
the limiting magnitude, but
Jitter, drift, sky background,
detector dark current may
limit exposure time.
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This work was performed to explore the limits of DFS performance.
During NGST alignment and phasing, we should be able to select our
observations to maximize performance, and can avoid low light imaging.
See [4850-51] and [4850-59] for further details on Coarse Phasing.




PSF Monitoring vs. Dispersed-Fringe

Sensing

Cathy Ohara and Fang Shi
PSF Monitoring is performed during normal science observations, with
the actuators turned off. We use an “In-focus PSF Optimizer" (IPO)
algorithm to measure the low spatial-frequency wavefront error, using
in-focus star images as input, see [4850-64]. This WCT-2 experiment
compares IPO to DFS measurements of piston error.

The experiment began by deliberately pistoning one of the WCT-2
segments. DFS fringes were measured, and then the grism was
removed from the beam and an in-focus image was taken for IPO.




Before DFS correction: Before DFS Correction:
DFS Measured = —2.959 um
[PO + PZT piston= —3.030 um

After DFS correction:
DFS Mecasured ~ 0 um

IPO Measured = —0.022 um -
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DFS correction
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With a proven accuracy of ~6 nm,
IPO provides an independent method
for verifying DFS accuracy




Wavefront Control via MGS Phase

Retrieval

Joseph J. Green

In Fine Phasing mode, a Modified Gerchberg-Saxton (MGS)
phase retrieval algorithm processes defocussed NIRcam images
to measure a wavefront error map. The WF map is then used to
move and deform telescope optics to optimize imaging
performance.

This experiment explores Fine Phasing accuracy using the WCT-1
testbed in a sequence of 5 WFS&C iterations. Initial WF error,
imparted by the "Telescope Simulator Deformable Mirror”
(SDM), is small. Corrections are applied using a second,
"Adaptive Optics DM" (AODM).
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Power Spectral Density (PSD) plots of the successive estimates show
that the AODM is effective in removing mid spatial-frequency WF
errors. It clears out a "black hole” surrounding the core of the PSF -
but leaves a “halo” of scattered light at spatial frequencies beyond
1/(twice the actuator spacing), the Nyquist £ for the AODM.

More surprisingly, it leaves a finite (though small) amount of low
spatial-frequency aberration, which is well within the AODM bandpass.
These low-f errors reflect the noise limits of the WCT, set by:,

-Lab seeing -Vibration
-System drifts -Defocus stage repeatability
-Image centering for MGS  -Aliasing induced by WFC




Removing low-order
Zernikes from the
estimate, the PSD
approaches the ultimate
limit imposed by actuator
repeatability.

Subsequent improvements

to the MGS and WFC
algorithms have improved
performance. These
include:

* Lower WFC control gain

- Anti-aliasing WFC filter.

* Sub-pixel image
centering for MGS
Other experiments

carried out with the
NGST Phase Retrieval
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Camera (PRC) and a Zygo interferometer in air have established the
WF sensing accuracy of the MGS algorithm at better than 3.8 nm
[4850-53], and its repeatability at better than 2.5 nm.

A new TPF Testbed coming on line soon will permit testing in a

thermally stabilized, vacuum environment, eliminating these major
error sources and further helping define the ultimate limits of the
NGST Fine Phasing techniques [4854-41].




High Dynamic-Range MGS Wavefront
Sensing |

Dave Cohen

Phase retrieval algorithms such as the MGS measure wrapped
phase, or phase modulo 2x. For WFC it is necessary fo use
unwrapped WF measurements fo compute actuator commands.
We have implemented explicit unwrapping as part of MGS, using
the algorithm of Ghiglia and Pritt.

This experiment uses the WCT-2 SDM actuators to aberrate
the WF in a random pattern of about 3.6 A. The MGS algorithm
is iterated 38 times, with unwrapping applied 3 times, following
the 9th, 19th and 38th iterations. The evolving estimate, and
the guiding error map, are shown:
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The capture range of MGS with unwrapping is a few waves. When
sensing in the MIRT at a long wavelength (15 um), this provides a
capture range of ~50 um, significantly greater than is required for
nominal NGST operations. See [4850-52] for further details.

We use implicit unwrapping approaches as well, including Prescription
Retrieval, which drives a ray-trace model to match defocussed imagery
in a classic optimization process. No unwrapping is required in this
approach because the solution surfaces are continuous.




WF Sensing in Broad-band Light

Bruce Dean
Phase retrieval is tolerant of blurring effects, such as the smearing
that comes with broad-band light, as illustrated in this experiment.
Defocussing moves the mapping of image to pupil into the geometric
regime. The intensity variations that signal surface irregularities grow
in size with defocus, while the blur "kernel” stays the same size, and
so has less overall influence on the estimate.

In this experiment, the WCT-1 AODM was aberrated with about 1
wave of trefoil. Phase retrieval data was taken with 2 filters, one
harrow band (R~100), the other broad-band (R~1.75). The low-f
estimates that resulted are very close.




Narrow-band
defocussed
image: R~105

Broad-band
&« defocussed
%% image: R~1.75

Fit

Zernike Decomposlhon

0.2 0.2 iy

0.5} 015}

Waves

0 -.d..__‘-

o h.:...;...;-___ ; -'-_.__M_ ..__-__1 .
123455739101112131415 123455789101112131415
Zamike Term Zemike Term






