California
Institute of

Software Fault Content More
Effectively

@ Estimating and Controlling 4Pt

Allen P. Nikora Norman F. Schneidewind John C. Munson
Autonomy and Control Section Department of iInformation Department of
Jet Propulsion Laboratory Sciences Computer Science
California Institute of Naval Postgraduate School University of ldaho
Technology Monterey, CA Moscow, ID

NASA Code Q Software Program Center Initiative UPN 323-08;
Kenneth McGill, Research Lead

OSMA Software Assurance Symposium
Sept 4-6, 2002

The work described in this presentation was carried out at the Jet Propuision Laboratory,
California Institute of Technology. This work is sponsored by the National Aeronautics and
Space Administration’s Office of Safety and Mission Assurance under the NASA Software
Program led by the NASA Software IV&V Facility. This activity is managed locally at JPL
through the Assurance Technology Program Office (ATPO).

@ Agenda

 Overview
Goals

* Benefits
Approach
Status
 Current Results
 References

SAS’02

JPL

California
Institute of
Technology

Objectives: Gain a better quantitative understanding of the effects of

JPLU

California
Institute of
Technology

Overview

requirements changes on fault content of implemented system. Gain a
better understanding of the type of faults that are inserted into a software

system during its lifetime.

Use measurements to PREDICT faults, and so achieve better <

Structural Measurements

fplanning (e.g., time to allocate
for testing, identify fault prone
modules)

guidance (e.g., choose design
that will lead to fewer faults)

assessment (e.g., know
mhem close to being done testing)

of Specification

Component
Specifications

i 8
b e L5 . [

Function Number of
types of Count Exceptions
measurement, Environmental
Constraints

SAS’02

Structural Measurements

Estimated Fault Counts by Type
of Source Code

for Implemented System
@ — —
26 | 4 = 2] 1 |-
E .
S
37 6 b= = | \ Numbers
2 v of .
=) i L ... estimated
% faults of
S = AN given
= i
Measure- g 41 5 ﬁ \ 125/ t¥pe n
ts Of w L. f M o e glven
men Ines o ax Conditional ~ Execution module
given Source Nesting Execution Order
type for Code Depth types of Faults Faults types of
given Total measurements I Variable (faults
ncorrect
module Operands Computation ~ Usage
Faults

@ Goals JF:*L

Technology

Quantify the effects of requirements changes on the
fault content of the implemented system by
identifying relationships between measurable
characteristics of requirements change requests
and the number and type of faults inserted into the
system in response to those requests.

Improve understanding of the type of faults that are
inserted into a software system during its lifetime
by identifying relationships between types of
structural change and the number and types of
faults inserted.

Improve ability to discriminate between fault-prone
modules and those that are not prone to faults.

SAS’02 4

_ JPL
@ Benefits Calfornis

Technology

» Use easily obtained metrics to identify software
components that pose a risk to software and
system quality.

— Implementation — identify modules that should
have additional review prior to integration with
rest of system

— Prior to implementation — estimate impact of
changes to requirements on quality of
implemented system.

* Provide quantitative information as a basis for
making decisions about software quality.

 Measurement framework can be used to continue
learning as products and processes evolve.

SAS’02 5

JPL
@ Approach

Technology

* Measure structural evolution on collaborating
development efforts

— Initial set of structural evolution
measurements collected

* Analyze failure data
— ldentify faults associated with reported failures

— Classify identified faults according to
classification rules

— Identify module version at which each
identified fault was inserted

— Associate type of structural change with fault
type

SAS’02 6

JP
@ Approach (cont’d) ol

Technology

 ldentify relationships between requirements
change requests and implemented
quality/reliability

— Measure structural characteristics of
requirements change requests (CRs).

— Track CR through implementation and
test

— Analyze failure reports to identify faults
inserted while implementing a CR

SAS’02 7

Approach: Structural
Measurement Framework

Extract Repaired

Problem Reports

Source Files

Identify Source
Files Repaired

Repaired File IDs

Repaired Source

Files

JPL

California
Institute of
Technology

Compare Repairs Fauit Regions
to Faulty Files Fault
g N Measurement
aul
Source Files Fauity Source Files an d
o .
| Identification
Fault Identification - - Add fault
and Counting Identify Faults Di d Faults Hn&'::}:;::““ m‘::;;z‘:: placement to
Rules repository
AN—
module name,
revision number,
Voot " e Add sl fault count
st recently asure most structural
CMLibrary E’::::c(;h:wng:d changed source recently changed r':::s?;;t:r‘:; measurements to
files source files repository
module name,
revision number, Str HCtural
structural measurements M
easurement
Measurement Compute fault . Place fault indices Me ent
Baseline index Fauitindices into repository moduie name Repository
revision number,
faultindex
module names, module names,
revision numbers, revision numbers,
fault indices fault indices Comp ute
Compute ! Fault
Proportiopn:I Fault Proportional Fault module name, revision number,
Burden Burden fault index, fault count Burden
corﬁ:‘rﬁ'op :::"ion Regression Compute absolute Absolute Fault
regress coefficients fault burden Burden
SAS’02 e

California
Institute of
Technology

@ Status JPL

* Year 2 of planned 2-year study

* Investigated relationships between requirements risk and
reliability.

» Installed improved version of structural and fault measurement
framework on JPL development efforts

— Participating efforts
» Mission Data System (MDS)
» Mars Exploration Rover (MER)
¢ Multimission Image Processing Laboratory (MIPL)

— All aspects of measurement framework shown on slide 8

can now be automated

s Fault identification and measurement was previously a strictly
manual activity

— Measurement is implemented in DARWIN, a network appliance
* Minimally intrusive
s Consistent measurement policies across multiple projects

SAS’02 9

JPL
@ Current Results: S

Technology

Requirements Risk vs. Reliability

* Analyzed attributes of requirements that
could cause software to be unreliable

— Space
— Issues

* Identified thresholds of risk factors for
predicting when number of failures would
become excessive

* Further details in [Schn02]

SAS’02 10

S

JPL
Current Results: Calformiz,

Technology

Requirements Risk vs. Reliability

Cululative Failures

11

10
9
8 Actual
7 CF = 6E-07*CS” - 0.0003*CS + 1.9511
6
5)
Predicted
4 CF: Cumulative Failures
3 CS: Cumulative Memory Space
2
1
O T T T 1 [T T]
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cumulative Memory Space (words)

Cumulative Failures vs. Cumulative Memory Space

SAS’02

11

JPL
@ Current Results: ot

Technology

Requirements Risk vs. Reliability

Sy
o

CF=.2481860*(exp(.0107263*CI))
Predicted

Actual

CF: Cumulative Failures
CI: Cumulative Issues

Cumulative Failures
© = N W A W N N 0 O

—

0 50 100 150 200 250 300 350 400

Cumulative Issues

Cumulative Failures vs. Cumulative Issues

SAS’02 12

JPL
@ Current Results: o

Technology

Requirements Risk vs. Reliability

0.003 CF = (-0.0003)+(0.0000012*CS)

CF: Cumulative Failures
CS: Cumulative Memory Space

Cumulative Failures per Cumulative
Memory Space

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Cumulative Memory Space (Words)

Rate of Change of Failures with Memory Space

SAS’02 13

JPL
@ Current Results: cafomi

Technology

Requirements Risk vs. Reliability

0.1200000 -
0.1000000 -
0.0800000 -

0.0600000 -

Issues

dCF/dCI=.0107263*CF
0.0400000 -

CF: Cumulative Failures
CI: Cumulative Issues

0.0200000 - ¢

Cumulative Failures per Cumulative

0.0000000
0 50 100 150 200 250 300 350 400

Cumulative Issues

Rate of Change of Failures with Issues

SAS’02 14

JPL
@ Current Results: Caifomia

Technology

Requirements Risk vs. Reliability

4000 -
CS = (b+(b"2-(4*a*(c-CF)))"0.5)/(2*a)
a = 0.0000006

3000 1 b =0.0003

c=1.9511

25007 CF: Cumulative Failures

CS: Cumulative Memory Space

3500 1

2000

1500 -

1000 -

Cumulative Memory Space (words)

500

0
0 1 2 3 4 5 6 7 8 9 10
Cumulative Failures

* Predicting cumulative risk factors

— Cumulative memory space vs. cumulative failures
SAS’02 15

JPL
@ Current Results: Sutms

Technology

Requirements Risk vs. Reliability

400

350
2 300
A
2 250 -
g
£ 2007 CI=(LN(CF/a))/b
g 150 - a=0.248186
6 b=0.0107263

1007 CF: Cumulative Failures

50 - CI: Cumulative Issues

0 — _
0 1 2 3 4 5 6 7 8 9 10

Cumulative Failures

* Predicting cumulative risk factors

— Cumulative issues vs. cumulative failures
SAS’02 16

(s Current Results: Fault JPL

California
Institute of

Types vs. Structural Change

« Structural measurements collected for release 5
of Mission Data System (MDS)

— 1,828 source files
— 66,063 unique modules
— 2,197,916 total measurements made

 Fault index and proportional fault burdens
computed

— At system level
— At individual module level

* Next slides show typical outputs of DARWIN
network appliance

SAS’02 17

& DARWIN Portal — Main Page

i

¥, Darwin - Netscape

ads Foward B] Ho ac2 Prink Securily | Shog Stop
™ Bookmadks ' Jb Locaiort [tp://SwWMeasurement ipLnasa gov/ ~] €5 What's Relaind

“BOSS " ELIAS JPL's1 Ro'e Piion Sei - EIS Metsoghg € JPLSecusty (U JPLKnowWha SCRHelp-Tabl Daiwin - Hong Kang Toud EAD Home PuTTY Docignenta

Darwin Darwin Portal

Seftware Systens Tatensatond

Navigation

Darwin Main
M D IWIN!
Infnrmatmn

Tester Information

Education

Prgect Manager

View Available
Databases
Feedback
The goal of the Darwin web portal is to provide a solid easy to use interface to the Darwin system. Contained in
this web portal you can find Manager Information, Tester Information, Darwin Education, and Project
Management
P Az " [Document: Done

JPL

California
Institute of

Technology

This is the main page of the DARWIN measurement system’s

SAS’02

user interface.

18

DARWIN - Structural JPL

California
Institute of

Evolution Plot

§ { ooz : -

9PUst MustrgMaker o' PaionSen £15 Massagng - JPL Securiy 1" dPL KniowWho SOR Helo: Tabl. Daiwin Hong Kong Toui “EAD Hame PUTTY Docu

Darwin - Darwin Portal
Sefiware Syatesrs et ol
N: .
wigton Graph of Code Churn and Code Delta for the project
DavinMan fdms_mdsvS_cvs.
Manager
Information i g — y g y
Tester Information ,/
e —— 500000 -
Education /
. g |
Praject Manager ;300000 { /«»""“
§ 200000 /
View Available
Databases 100000 ","
o
Feedback of w :..rj{mp/lgliuljrni?‘zgz.d?t“ wing igg *4]—
10261 01701 04;01. o7/Ag 10701 o101 04701
Date
Click here for help

Chart of a system’s structural evolution during development. This is available under
“Manager Information”. Clicking on a data point will bring up a report detailing the
amount of change that occurred in each module. This plot shows some of the

. re . - h _
SAS 02 individual builds for release 5 of the MDS 19

@ DARWIN - Module-Level Build P+
Detils

Technology

(Non-zero) Modules for build 2001-08-09 of project mdsv5_cvs, sorted by
Churn since baseline.

Churmn From

! Baseline
test2s() ' 3108.478289
ParachuteEstimator Traits: Thread: ;predictState() i - ' 2826.317554
Parameter::getTypeFromStringNoNS(conststd: string&t) ' ' ' 2726351943
Parameter::getTypeFromString{conststd::stringdyp) ' e o 2725.674228
TestIntervallic:: Testintervallic() ') ' 2254.132621
‘mdsmain(constintargc, har*argv(]) i T T ' 1302.320181
TestDiscrete:: TestDiscrete() T i R o T l670.521970
examples() ' 1660.459373
TestViewFinder: runTests() T D o 509.278008
SimpleNormalPositionEstimator Traits: Thread: :processMeasurement() T T T B66.179343
" B 362.248144

i’ositionEstimqumctionTest(Dispatch&r;conststd: :shing&ke&,constCGIArgs&m@)
AirDragMode|ParameterEstimator Traits:: Thread::predictState()
Server::gefNextRequest() T
i"'ifoReaderHandler::sm(Dispatch&:-,constsring&.key,cbnétCGIArgs&m'gs)
GreaseFilterTest(l" patch&r, d::string&} ,,constCGlArgs&;'gs)ﬁ o

297209347

OSTimeService::sve(void)) o o 243421666
AtiributeSetter::setlt(conststd: :string&valueSting) S 241489394
LengthTest(Dispatch&r,conststd: :string&ckey, constCGIArgs&args) V T - 232.521508
CarExampleMain(intargc, char*argv{],CppUnit: : TestSuite &args) i . 226.600649 I:J
. ‘_ estou . . , N ,._;_J . I
il . Dociment: Dore e % o0 @ 2| 4 EE 0N B AN

This report shows the amount of change that’s occurred for each
module shown in this particular build (2001-03-10).

SAS’02 20

California
Institute of

& Current Results: Fault JPL
Identification and Measurement ™~

* Developing software fault models depends on
definition of what constitutes a fault

* Desired characteristics of measurements,
measurement process

— Repeatable, accurate count of faults

— Measure at same level at which structural
measurements are taken

* Measure at module level (e.g., function, method)
— Easily automated
* More detail in [Mun02]

SAS’02 21

s Current Results: Fault 4PL

California
Institute of

Identification and Measurement ™

* Approach

— Examine changes made in response to
reported failures

— Base recognition/enumeration of
software faults on the grammar of the
software system’s language

— Fault measurement granularity in terms
of tokens that have changed

SAS’02 22

California
Institute of

@ Current Results: Fault JPL
Identification and Measurement ™

* Approach (cont’d)
— Consider each line of text in each version of

the program as a bag of tokens

* If a change spans multiple lines of code, all lines for
the change are included in the same bag

— Number of faults based on bag differences
between
* Version of program exhibiting failures
» Version of program modified in response to failures
— Use version control system to distinguish
between
« Changes due to repair and

» Changes due to functionality enhancements and
other non-repair changes

SAS’02 23

California
Institute of

& Current Results: Fault JPL
Identification and Measurement ™"

 Example 1
— Original statement: a=b + c;
« B, = {<a>, <=>, , <+>, <c>}
— Modified statement: a=b - c;
* B, = {<a>, <=>, , <->, <c>}
-B,-B, = {<+>, <>}
~|B;| =By, B, = B,| =2
— One token has changed = 1 fault

SAS’02 2

Current Results: Fault 4PL

California
Institute of

Identification and Measurement ™

 Example 2

— Original statement: a=b - c;
* B, = {<a>, <=>, , <->, <c>}

— Modified statement: a=c¢ - b;
* B; = {<a>, <=>, <c>, <->, }

-B,-B;={}

— B, =[B;|, [B,— B3| =0

— 1 fault representing incorrect

sequencing

SAS’02 ’s

@ Current Results: Fault JPL

Institute of

Identification and Measurement =

« Example 3
— Original statement: a=Db - c;
« B, = {<a>, <=>, <¢>, <->, }
— Modified statement: a=1+c - b;
« B, = {<a>, <=>, <1>, <+>, <c>, <->, }
— B3 — By ={<1>, <+>}
~|Bsl=6,[B,| =8, |B,| - |B;] = 2
— 2 new tokens representing 2 faults

SAS’02 26

@ Current Results: Fault JPL

California
Institute of

Identification and Measurement =~

 Available Failure/Fault Information

— For each failure observed during MDS testing,
the following information is available
 The names of the source file(s) involved in repairs
* The version number(s) of the source files in repairs

— Example on next slide

SAS’02 27

SAS’02

Current Results: Fault
Identification and Measurement ™"

Available Failure/Fault Information — Example

Directory File name Version Problem
ReportiD |
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ CurrentTime.cpp 1 |1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 4 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 3 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTDuration.cpp 2 I1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTDuration.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTEpoch.cpp 2 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTEpoch.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ testRTDuration.cpp 0 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.cpp 1 I1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.cpp 0 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 1 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 0 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ testRTEpoch.cpp 1 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TmgtException.cpp 0 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TmgtException.h 0 I1AR-00182

JPLU

California
Institute of

28

Current Results: Fault 4PL

California
Institute of

Identification and Measurement =

Fault Identification and Counting Tool Output

MDS

Fault

countyMDS

Rep.source.Mds.Fw.Car.c++.ArchetypeConnectorFactory.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitectureElementDefinition.cpp 1 35

MDS

Fault

countyMDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 1 79

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceReqistry.cpp 2 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 3 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchManagedinstance.cpp 1 36

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 1 48

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 2 3

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.CGIMethodRegistration.cpp 1 4

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 1 12

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 2 37

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 2 65

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 2 50

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjectLinkinstance.cpp 1 27

MDS

Faulit

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjectLinkinstanceArguments.cpp 1 0

MDS

Fault

countMDS

Rep.source.Mds.Fw.Car.c++.ComponentRegistration.cpp 1 2

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 1 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 2 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 2 27

Output format:

SAS’02

<Source file name> <source file version> <fault count>

29

S

[Mun02]

[Schn02]

[Nik02]

[Nik02a]
[Schn01]
[Nik01]

SAS’02

References and 4PL

California
Institute of

Further Reading feolon

J. Munson, A. Nikora, “Toward A Quantifiable Definition of Software
Faults”, to be published in the proceedings of the International
Symposium on Software Reliability Engineering, Annapolis, MD,
November 12-15, 2002

N. Schneidewind, “Requirements Risk versus. Reliability”, to be
presented at the International Symposium on Software Reliability
Engineering, Annapolis, MD, November 12-15, 2002

A. Nikora, M. Feather, H. Kwong-Fu, J. Hihn, R. Lutz, C. Mikulski, J.
Munson, J. Powell, “Software Metrics In Use at JPL Applications and
Research”, 8t IEEE International Software Metrics Symposium, June
4-7, 2002, Ottawa, Ontario, Canada

A. Nikora, J. Munson, “Automated Software Fault Measurement”,
Assurance Technology Conference, Glenn Research Center, May 29-
30, 2002

Norman F. Schneidewind, “Investigation of Logistic Regression as a
Discriminant of Software Quality”, proceedings of the International
Metrics Symposium, 2001

A. Nikora, J. Munson, “A Practical Software Fault Measurement and
Estimation Framework”, Industrial Practices presentation,

International Symposium on Software Reliability Engineering, Hong
Kong, November 27-30, 2001 30

S

[Schn99]
[Nik98]

[Schn97]

[Schn97a]

SAS’02

References and 4PL

California
Institute of

Further Reading (cont’d) ™™

N. Schneidewind, A. Nikora, "Predicting Deviations in Software
Quality by Using Relative Critical Value Deviation Metrics",
proceedings of the 10th International Symposium on Software
Reliability Engineering, Boca Raton, FL, Nov 14, 1999

A. Nikora, J. Munson, “Software Evolution and the Fault Process”,
proceedings, 239 Annual Software Engineering Workshop,
NASA/Goddard Space Flight Center, Greenbelt, MD, December 2-3,
1998

Norman F. Schneidewind, “ A Software Metrics Model for Quality
Control”, Proceedings of the International Metrics Symposium,
Albuquerque, New Mexico, November 7, 1997, pp. 127-136.

Norman F. Schneidewind, “A Software Metrics Model for Integrating
Quality Control and Prediction”, Proceedings of the International
Symposium on Software Reliability Engineering, Albuquerque, New
Mexico, November 4, 1997, pp. 402-415.

31

