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Overview

requirements changes on fault content of implemented system. Gain a
better understanding of the type of faults that are inserted into a software

system during its lifetime.

Use measurements to PREDICT faults, and so achieve better <

Structural Measurements

fplanning (e.g., time to allocate
for testing, identify fault prone
modules)

guidance (e.g., choose design
that will lead to fewer faults)

assessment (e.g., know
mhem close to being done testing)

of Specification

Component
Specifications

i 8
b e L5 . [

Function Number of
types of Count  Exceptions
measurement, Environmental
Constraints

SAS’02

Structural Measurements

Estimated Fault Counts by Type
of Source Code

for Implemented System
@ — —
26 | 4 = 2] 1 |-
E .
S
37 6 b= = | \ Numbers
2 v of .
=) i L ... estimated
% faults of
S = AN given
= i
Measure- g 41 5 ﬁ \ 125/ t¥pe n
ts Of w L. f M o e glven
men Ines o ax Conditional ~ Execution module
given Source Nesting Execution Order
type for Code Depth types of Faults Faults types of
given Total measurements I Variable ( faults
ncorrect
module Operands Computation ~ Usage
Faults
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Quantify the effects of requirements changes on the
fault content of the implemented system by
identifying relationships between measurable
characteristics of requirements change requests
and the number and type of faults inserted into the
system in response to those requests.

Improve understanding of the type of faults that are
inserted into a software system during its lifetime
by identifying relationships between types of
structural change and the number and types of
faults inserted.

Improve ability to discriminate between fault-prone
modules and those that are not prone to faults.

SAS’02 4



_ JPL
@ Benefits Calfornis

Technology

» Use easily obtained metrics to identify software
components that pose a risk to software and
system quality.

— Implementation — identify modules that should
have additional review prior to integration with
rest of system

— Prior to implementation — estimate impact of
changes to requirements on quality of
implemented system.

* Provide quantitative information as a basis for
making decisions about software quality.

 Measurement framework can be used to continue
learning as products and processes evolve.

SAS’02 5
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Technology

* Measure structural evolution on collaborating
development efforts

— Initial set of structural evolution
measurements collected

* Analyze failure data
— ldentify faults associated with reported failures

— Classify identified faults according to
classification rules

— Identify module version at which each
identified fault was inserted

— Associate type of structural change with fault
type

SAS’02 6



JP
@ Approach (cont’d) ol

Technology

 ldentify relationships between requirements
change requests and implemented
quality/reliability

— Measure structural characteristics of
requirements change requests (CRs).

— Track CR through implementation and
test

— Analyze failure reports to identify faults
inserted while implementing a CR

SAS’02 7
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Measurement Framework
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@ Status JPL

* Year 2 of planned 2-year study

* Investigated relationships between requirements risk and
reliability.

» Installed improved version of structural and fault measurement
framework on JPL development efforts

— Participating efforts
» Mission Data System (MDS)
» Mars Exploration Rover (MER)
¢ Multimission Image Processing Laboratory (MIPL)

— All aspects of measurement framework shown on slide 8

can now be automated

s Fault identification and measurement was previously a strictly
manual activity

— Measurement is implemented in DARWIN, a network appliance
* Minimally intrusive
s Consistent measurement policies across multiple projects

SAS’02 9
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Requirements Risk vs. Reliability

* Analyzed attributes of requirements that
could cause software to be unreliable

— Space
— Issues

* Identified thresholds of risk factors for
predicting when number of failures would
become excessive

* Further details in [Schn02]

SAS’02 10
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Requirements Risk vs. Reliability
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Requirements Risk vs. Reliability
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Requirements Risk vs. Reliability
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Requirements Risk vs. Reliability
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Requirements Risk vs. Reliability
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Requirements Risk vs. Reliability
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Types vs. Structural Change

« Structural measurements collected for release 5
of Mission Data System (MDS)

— 1,828 source files
— 66,063 unique modules
— 2,197,916 total measurements made

 Fault index and proportional fault burdens
computed

— At system level
— At individual module level

* Next slides show typical outputs of DARWIN
network appliance

SAS’02 17



& DARWIN Portal — Main Page
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This is the main page of the DARWIN measurement system’s

SAS’02

user interface.
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Chart of a system’s structural evolution during development. This is available under
“Manager Information”. Clicking on a data point will bring up a report detailing the
amount of change that occurred in each module. This plot shows some of the
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(Non-zero) Modules for build 2001-08-09 of project mdsv5_cvs, sorted by
Churn since baseline.

Churmn From

! Baseline
test2s() ' 3108.478289
ParachuteEstimator Traits: Thread: ;predictState() i - ' 2826.317554
Parameter::getTypeFromStringNoNS(conststd: string&t) ' ' ' 2726351943
Parameter::getTypeFromString{conststd::stringdyp) ' e o 2725.674228
TestIntervallic:: Testintervallic() ' ) ' 2254.132621
‘mdsmain(constintargc, har*argv(]) i T T ' 1302.320181
TestDiscrete:: TestDiscrete() T i R o T l670.521970
examples() ' 1660.459373
TestViewFinder: runTests() T D o 509.278008
SimpleNormalPositionEstimator Traits: Thread: :processMeasurement() T T T B66.179343
" B 362.248144

i’ositionEstimqumctionTest(Dispatch&r;conststd: :shing&ke&,constCGIArgs&m@)
AirDragMode|ParameterEstimator Traits:: Thread::predictState()
Server::gefNextRequest() T
i"'ifoReaderHandler::sm(Dispatch&:-,constsring&.key,cbnétCGIArgs&m'gs)
GreaseFilterTest(l" patch&r, d::string&} ,,constCGlArgs&;'gs)ﬁ o

297209347

OSTimeService::sve(void) ) o o 243421666
AtiributeSetter::setlt(conststd: :string&valueSting) S 241489394
LengthTest(Dispatch&r,conststd: :string&ckey, constCGIArgs&args) V T - 232.521508
CarExampleMain(intargc, char*argv{],CppUnit: : TestSuite &args) i . 226.600649 I:J
. ‘_ estou . . , N ,._;_J . I
il . Dociment: Dore e % o0 @ 2| 4 EE 0N B AN

This report shows the amount of change that’s occurred for each
module shown in this particular build (2001-03-10).
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* Developing software fault models depends on
definition of what constitutes a fault

* Desired characteristics of measurements,
measurement process

— Repeatable, accurate count of faults

— Measure at same level at which structural
measurements are taken

* Measure at module level (e.g., function, method)
— Easily automated
* More detail in [Mun02]

SAS’02 21
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Identification and Measurement ™

* Approach

— Examine changes made in response to
reported failures

— Base recognition/enumeration of
software faults on the grammar of the
software system’s language

— Fault measurement granularity in terms
of tokens that have changed

SAS’02 22
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* Approach (cont’d)
— Consider each line of text in each version of

the program as a bag of tokens

* If a change spans multiple lines of code, all lines for
the change are included in the same bag

— Number of faults based on bag differences
between
* Version of program exhibiting failures
» Version of program modified in response to failures
— Use version control system to distinguish
between
« Changes due to repair and

» Changes due to functionality enhancements and
other non-repair changes

SAS’02 23
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 Example 1
— Original statement: a=b + c;
« B, = {<a>, <=>, <b>, <+>, <c>}
— Modified statement: a=b - c;
* B, = {<a>, <=>, <b>, <->, <c>}
-B,-B, = {<+>, <>}
~|B;| =By, B, = B,| =2
— One token has changed = 1 fault

SAS’02 2
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 Example 2

— Original statement: a=b - c;
* B, = {<a>, <=>, <b>, <->, <c>}

— Modified statement: a=c¢ - b;
* B; = {<a>, <=>, <c>, <->, <b>}

-B,-B;={}

— B, =[B;|, [B,— B3| =0

— 1 fault representing incorrect

sequencing

SAS’02 ’s
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« Example 3
— Original statement: a=Db - c;
« B, = {<a>, <=>, <¢>, <->, <b>}
— Modified statement: a=1+c - b;
« B, = {<a>, <=>, <1>, <+>, <c>, <->, <b>}
— B3 — By ={<1>, <+>}
~|Bsl=6,[B,| =8, |B,| - |B;] = 2
— 2 new tokens representing 2 faults

SAS’02 26
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 Available Failure/Fault Information

— For each failure observed during MDS testing,
the following information is available
 The names of the source file(s) involved in repairs
* The version number(s) of the source files in repairs

— Example on next slide

SAS’02 27
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Available Failure/Fault Information — Example

Directory File name Version Problem
ReportiD |
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ CurrentTime.cpp 1 |1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 4 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 3 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ make.cfg 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTDuration.cpp 2 I1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTDuration.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTEpoch.cpp 2 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ RTEpoch.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ testRTDuration.cpp 0 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.cpp 1 I1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.cpp 0 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 2 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 1 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TestRTDuration.h 0 1AR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ testRTEpoch.cpp 1 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TmgtException.cpp 0 IAR-00182
MDS_Rep/source/Mds/Fw/Time/Tmgt/c++/ TmgtException.h 0 I1AR-00182

JPLU

California
Institute of
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Fault Identification and Counting Tool Output

MDS

Fault

countyMDS

Rep.source.Mds.Fw.Car.c++.ArchetypeConnectorFactory.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitectureElementDefinition.cpp 1 35

MDS

Fault

countyMDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 1 79

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceReqistry.cpp 2 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchitecturelnstanceRegistry.cpp 3 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ArchManagedinstance.cpp 1 36

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 1 48

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Callablelnterface.cpp 2 3

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.CGIMethodRegistration.cpp 1 4

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 1 12

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.Collection.cpp 2 37

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentComponentLinkinstance.cpp 2 65

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 1 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentConnectorLinkinstance.cpp 2 50

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjectLinkinstance.cpp 1 27

MDS

Faulit

count/MDS

Rep.source.Mds.Fw.Car.c++.ComponentObjectLinkinstanceArguments.cpp 1 0

MDS

Fault

countMDS

Rep.source.Mds.Fw.Car.c++.ComponentRegistration.cpp 1 2

MDS

Fauit

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 1 8

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteComponentinstance.cpp 2 0

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 1 42

MDS

Fault

count/MDS

Rep.source.Mds.Fw.Car.c++.ConcreteConnectorinstance.cpp 2 27

Output format:

SAS’02

<Source file name> <source file version> <fault count>
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