
JPL
California
Institute of
Technology

Estimating and Controlling
Software Fault Content More

Effectively
Allen P. Nikora Norman F. Schneidewind John C. Munson

Autonomy and Control Section Department of Information Department of
Jet Propulsion Laboratory Sciences Computer Science

California Institute of Naval Postgraduate School University of Idaho
Tech nology Monterey, CA Moscow, ID

NASA Code Q Software Program Center Initiative UPN 323-08;
Kenneth McGill, Research Lead

OSMA Software Assurance Symposium

Sept 4-6, 2002

The work described in this presentation was carried out at the Jet Propulsion Laboratory,
California Institute of Technology. This work is sponsored by the National Aeronautics and
Space Administration’s Office of Safety and Mission Assurance under the NASA Software
Program led by the NASA Software IV&V Facility. This activity is managed locally at JPL
through the Assurance Technology Program Office (ATPO).

Agenda California
Institute of
Technology

Overview

Goals

Benefits

Approach

Status

Current Results

References

2 SAS’02

JPL
California
Institute of
Technology

Overview
Objectives: Gain a better quantitative understanding of the effects of
requirements changes on fault content of implemented system. Gain a
better understanding of the type of faults that are insetted into a sofiware
system during its lifetime.

Use measurements to PREDICT faults, and so achieve better

planning (e.g., time to allocate
for testing, identify fault prone
modules)

that will lead to fewer faults)
(e.g., choose design

assessment (e.g., know
close to being done testing)

Structural Measurements Estimated Fault Counts by Type
for Implemented System

Structural Measurements
of Specification of Source Code

* 2
.B

f i * 0 2
E '3
65

Measure
ments of

3

Number of given
Count Exceptions type for

Constraints module
given

types of

SAS'02

Goals
JPL
California
Institute of
Technology . Quantify the effects of requirements changes on the

fault content of the implemented system by
identifying relationships between measurable
characteristics of requirements change requests
and the number and type of faults inserted into the
system in response to those requests. . Improve understanding of the type of faults that are
inserted into a software system during its lifetime
by identifying relationships between types of
structural change and the number and types of
faults inserted. . Improve ability to discriminate between fault-prone
modules and those that are not prone to faults.

SAS’02 4

Be nef i ts
JPL
California
Institute of
Technology

Use easily obtained metrics to identify software
components that pose a risk to software and
system quality.
- Implementation - identify modules that should

have additional review prior to integration with
rest of system

changes to requirements on quality of
implemented system.

- Prior to implementation - estimate impact of

Provide quantitative information as a basis for
making decisions about software quality.
Measurement framework can be used to continue
learning as products and processes evolve.

SAS’02 5

Approach
JPL
California
Institute of
Technology

Measure structural evolution on collaborating
development efforts
- Initial set of structural evolution

Analyze failure data
measurements collected

- Identify faults associated with reported failures
- Classify identified faults according to

- Identify module version at which each

- Associate type of structural change with fault

classification rules

identified fault was inserted

type

SAS’02 6

Approach (cont’d)
JPL
California
Institute of
Technology

Identify relationships between requirements
change requests and implemented
qual i ty/rel ia bi I i ty
- Measure structural characteristics of

requirements change requests (CRs).
- Track CR through implementation and

test
- Analyze failure reports to identify faults

inserted while implementing a CR

SAS’02 7

Approach: Structural
Measurement Framework

Problem Repons
Files Identify Source \

RlesRepaired / Repaired File IDS
\

Source Files
I I -

Fault Identification
andhnt ing

Rules

I /

Add fault
pracement to

Placement / repository /
\ Identify Faults \ Discovered Faults . \ Find Initial Fault \ Initial Fault \

Occurence

CMLibrary

I
\

module name,

fault count
hkasure most Add Stwchlral M s t recently

/ measurements to
RaWStruCtuial \ \

measurements / repository
changed source ,, \ recentlychanged \

Rles sourcefiles 1
\ Exbactchanged \

sourcefiles /

hkasurement
Baseline

module name,
revision number,

structural measurements

/ MBasurement
\ Compute fault \

index Repository module name,

module names,
revision numben.

fault indices

I
\ I

/

JPL

module names,
revision numbeffi.

fault indices Compute

California
Institute of
Technology

PmportioMl Fault module name, revision number,
Compute

Burden fault index fault cwnt Burden
Pwrt ional Fault \

Fault
Measurement

and
Identification

Fault
Burden

/

Develop fault

model
content regression

SAS’02

Structural
Measurement

Regression \ Compute absolute \ Absolute Fault
coefficients / fault burden / Burden

fault index
,

JPL Status California
Institute of
Technology

Year 2 of planned 2-year study
Investigated relationships between requirements risk and
re1 ia bil ity .
Installed improved version of structural and fault measurement
framework on JPL development efforts
- Participating efforts

Mission Data System (MDS)
Mars Exploration Rover (MER)
Multimission Image Processing Laboratory (MIPL)

- All aspects of measurement framework shown on slide 8
can now be automated

Fault identification and measurement was previously a strictly
manual activity

- Measurement is implemented in DARWIN, a network appliance
Minimally intrusive
Consistent measurement policies across multiple projects

SAS’02 9

Current Results:
JPL
California
Institute of
Technology

Requirements Risk vs, Reliability

Analyzed attributes of requirements that
could cause software to be unreliable

- Space

- Issues

Identified thresholds of risk factors for
predicting when number of failures would
become excessive

Further details in [Schn02]

SAS’02 10

Technology
Current Resu Its:

Requirements Risk vs. Reliability
11 -
10 -
9 -
8 -
7 -
6 -
5 -
4 -
3 -
2 -

P .- c,
Q

Califomia
Institute of

CF: Cumulative Failures
CS: Cumulative Memory Space

I I I I I I 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Cumulative Memory Space (words)

Cumulative Failures vs. Cumulative Memory Space

1 1 SAS’02

JPL
California
Institute of

10 -
9 -

v) 8 -
c1 5 7 -

8 ’ I

.r(

d 6 -

2

.r(5 - - 4 -
c,
ep

2
1 -
0 --

Technology
Current Resu I ts:

Requirements Risk vs. Reliability

B
CF=.248 1860*(exp(.0107263*CI)) /

Actual

CF: Cumulative Failures
CI: Cumulative Issues

I I I I I I I I

50 100 150 200 250 300 350 400
Cumulative Issues

Cumulative Failures vs. Cumulative Issues

SAS’O2 12

JPL
California
Institute of

0.005 -

0.0045 ~

0.004 - ’ 0.0035 -

$ 3 0.003 -

5 2 0.0025 -

P
.n
c, m
I

a

b :

Current Results: Technology

Requirements Risk vs. Reliability

o n c, 0.0015
m
I

0.001 -

6 0.0005 -

0 -r

CS: Cumulative Memory Space

I

1000 1500 2000 2500 3000 3500 4000 4500 500

Cumulative Memory Space (Words)

Rate of Change of Failures with Memory Space

SAS’02 13

Technology
Current Results:

Requirements Risk vs. Reliability
0.1200000

0.1000000

0.0800000

0.0600000

0.0400000

0.0200000

0.0000000

California
Institute of

h CF: Cumulative Failures
CI: Cumulative Issues

0 50 100 150 200 250 300 350 400

Cumulative Issues

Rate of Change of Failures with Issues

SAS’02 14

JPL

h

f 3500 -

w P 3000 -
Q) :
k

2500 ~

; 2000 - ' 1500 - + aJ .-
c,

9 1000-

z 8 5 0 0 1

Cali fomia
Institute of

CS = (b+(bA2-(4*a*(c-CF)))"0.5)/(2*a)
a = 0.0000006
b=0.0003
c = 1.9511
CF: Cumulative Failures
CS: Cumulati

Technology
C u rren t Res u Its :

Requirements Risk vs. Reliability
4000 1

0 1 2 3 4 5 6 7 8 9 10
Cumulative Failures

Predicting cumulative risk factors

- Cumulative memory space vs. cumulative failures
SAS'02 15

JPL
Cali fomia
Institute of

400 -

350 -

m 3 0 0 - a4

250 -

.= 200 ~

2

$

a

a u 100 -

Q

E 150 ~

c1

50 -

0

Current Results: Technology

Requirements Risk vs. Reliability

--

a= 0.248186
b= 0.0107263
CF: Cumulative Failures
CI: Cumulative Issues

I ,

2 3 4 5 6 7 8 9 10 1

Cumulative Failures

Predicting cumulative risk factors

- Cumulative issues vs. cumulative failures
SAS’02 16

JPL
California
Institute of
Technology

Current Results: Fault
Types vs. Structural Change

Structural measurements collected for release 5
of Mission Data System (MDS)
- 1,828 source files
- 66,063 unique modules
- 2,197,916 total measurements made

Fault index and proportional fault burdens
computed
- At system level
- At individual module level

Next slides show typical outputs of DARWIN
network appliance

SAS’02 17

JPL
DARWIN Portal - Main Page Institute California of -

Technology

Navigation

DanvinMain

Manager
Infomation

Tester Information

Education

F'roiect Manager
~- ~ ~

View Avadable
Databases

Feedback

The goal of the Darwm web p o d IS to prom& a sohd easy to use mtcxfice to the D a " system Contamed m
dns web p o d you CHI 6nd Manager Informahon, Tester Information. D m Educatloa and
Management

This is the main page of the DARWIN measurement system's

SAS'02 18

user interface.

DARWIN - Structural
Evolution Plot

Graph of Code Churn and Code Delta for the project
fdms mdsv5 cvs.

!lap.iLption

DanvinMain - -
Manager
Momation

rester Momation

Education

h i e c t Manaeer

View Avatlable
Databases

Feedback

400000 c

C%ck here for heb

California
Institute of
Technology

Chart of a system's structural evolution during development. This is available under
"Manager Information". Clicking on a data point will bring up a report detailing the

amount of change that occurred in each module. This plot shows some of the
individual builds for release 5 of the MDS.

19 SAS'02

JPL DARWIN - Module-Level Build California

Details
- -

Institute of
Technology

(Non-zero) Modules for build 2001-08-09 of project mdsv5_cvs, sorted by
Churn since baseline.

1

ChmnFrmu
B u e b e

3108,478289

2826.3 11554
. - _~

~ 2726.351943

2125.614228

2254.132621

1302 320181

670.521910

. - ______
-

1660.459373

509.2%3008
~~

- _ _ _ _
~ 366.179343 - ~~

362.248144

291.209341
_ _ _ _ _ ~

This report shows the amount of change that’s occurred for each
module shown in this particular build (2001 -03-1 0).

SAS’02 20

JPL
California
Institute of

Current Results: Fault
Identification and Measurement

Developing software fault models depends on
definition of what constitutes a fault
Desired characteristics of measurements,
measurement process
- Repeatable, accurate count of faults
- Measure at same level at which structural

- Easily automated
More detail in [Mun02]

measurements are taken
Measure at module level (emsm, function, method)

SAS’02 21

0 A

SAS’02

JPL
California
Institute of

C u rren t Res u Its : Fault
ldentification and Measurement

Approach

- Examine changes made in response to

- Base recognition/enumeration of

reported failures

software faults on the grammar of the
software system’s language

- Fault measurement granularity in terms
of tokens that have changed

22

JPL
California
Institute of

Current Results: Fault
ldentifica tion and Measurement Techno*ogy

Approach (cont’d)
- Consider each line of text in each version of

the program as a bag of tokens
If a change spans multi le lines of code, all lines for
the change are include Lp in the same bag

- Number of faults based on bag differences
between

Version of program exhibiting failures
Version of program modified in response to failures

Changes due to repair and
Changes due to functionality enhancements and
other non-repair changes

- Use version control system to distinguish
between

SAS’02 23

0

JPL
California
Institute of

C u rre n t Res u Its : Fault
ldentification and Measurement

Example 1

-Original statement: a = b + c;

- Modified statement: a = b = c;

B, = {<a>, <=>, , <+> Y <c>}

B, = {<a>, <=>, , <->, <c>}

- Bl- B2 {<+>, <I> }
- PI I = lB2L le, - & I = 2
-One token has changed 3 I fault

SAS’02 24

JPL
Cali fomia
Institute of

Current Results: Fault
Identification and Measurement

Example 2
- Original statement: a = b = c;

- Modified statement: a = c = b;
B, = {<a>, <=>, , <=> 9 <c>}

B, = {<a>, <=>, <c>, <->, }

- B2 - B3 { }
- IB2 I le,(3 - 0
- I fault representing incorrect

sequencing

SAS’02 25

JPL
California
Institute of

Current Results: Fault
ldentification and Measurement

Example 3

- Original statement: a = b - c;

- Modified statement: a = 1 + c = b;

B, = {<a>, <=>, <c>, C->, }

B, = {<a>, <=>, <I>, <+>, CC>, <-> 9 }

- 2 new tokens representing 2 faults

SAS’02 26

JPL
California
Institute of

Current Results: Fault
Identification and Measurement

Available FaiIure/FauIt Information
- For each failure observed during MDS testing,

the following information is available
The names of the source file(s) involved in repairs
The version number(s) of the source files in repairs

- Example on next slide

SAS’02 27

JPL
California
Institute of

Current Results: Fault
Identification and Measurement

MDS-Rep/sourcelMds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

Available FaiIure/Fau It Informat ion - Example

~ _____

CurrentTime.cpp I

make.cfg 4

SAS’02

MDS-Rep/source/Mds/Fw/Time/Tmgtlc++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

Directory I File name I Version

~

make.cfg 3

make.cfg 2

RTDuration.cpp 2

MDS-Rep/source/Mds/Fw/Time/Tmgtlc++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

~~ ~

RTEpoch.cpp 2

RTEp0ch.h 2

testRTDuration.cpp 0

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ I RTDurati0n.h 1 2

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fwrrimerrmgt/c++/

TestRTDuration.cpp 1

TestRTDuration.cpp 0

TestRTDurati0n.h 2

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

~ ~ ~ _ _ _ _ _ _ _ _ _ _

TestRTDurati0n.h 1

TestRTDurati0n.h 0

testRTEpoch.cpp 1

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/

Problem
Report ID

IAR-00182

~ ~

TmgtException.cpp 0

TmgtException.h 0

IAR-00182
~ ~_____

IAR-00182

IAR-00182

IAR-00182

IAR-00182

IAR-00182

IAR-00182

IAR-00182
~

IAR-00182

IAR-00182

IAR-00182

IAR-00182

IAR-00182

IAR-00182
~~ ~

IAR-00182

IAR-00182
28

JPL
California
Institute of

Current Results: Fault
Identification and Measurement

Fault Identification and Counting Tool Output

MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ArchetvDeConnectorFactorv.cDD 1 42
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchitectureElementDefinition.cDR 1 35
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchitecturelnstanceReaistrv.cDD 1 79
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ArchitectureInstanceReaistrv.cDD 2 8
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ArchitectureInstanceReaistrv.cDD 3 0
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchManaaedInstance.cDD 1 36
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.Callablelnterface.cDD 1 48
MDS Fault countfMDS ReD.source.Mds.Fw.Car.c++.Callablelnterface.cDp 2 3
MDS Fault counVMDS ReD.source.Mds.Fw.Car.c++.CGlMethodReaistration.cDD 1 4
MDS Fault counVMDS ReD.source.Mds.Fw.Car.c++.Collection.cDD I 12
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.Collection.cDD 2 37
MDS Fault countfMDS ReD.source.Mds.Fw.Car.c++.ComDonentComDonentLinklnstance.cDD 1 0
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ComDonentComDonentLinklnstance.cDD 2 65
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ComDonentConnectorLinklnstance.cDD 1 0
MDS Fault countlMDS Reo.source.Mds.Fw.Car.c++.ComDonentConnectorLinklnstance.cDD 2 50
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ComDonentObiectLinklnstance.cDD 1 27
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ComDonentObiectLinklnstanceArauments.cDp 1 0
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ComponentReaistration.cDD 1 2
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ConcreteComDonentlnstance.cDD 1 8
MDS Fault countlMDS Reu.source.Mds.Fw.Car.c++.ConcreteComDonentlnstance.cDD 2 0
MDS Fault countlMDS Reo.source.Mds.Fw.Car.c++.ConcreteConnectorlnstance.cDp 1 42
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ConcreteConnectorlnstance.cDP 2 27

Output format:

<Source file name> <source file version> <fault count>

SAS’02 29

[Mun02]

[Sc h n 021

[N i k02]

[N i k02a]

[SchnOl]

[NikOl]

SAS’02

1

References and
Further Reading

Munson, A. Nikora, “Toward A Quantifiable Definitlm of Software
Faults”, to be published in the proceedings of the International
Symposium on Software Reliability Engineering, Annapolis, MD,
November 1245,2002

JPL
California
Institute of
Technology

N . Sc h neidewi nd, “ Req u i remen ts Risk ve rs us. Re1 ia b i I i ty ” , to be
presented at the International Symposium on Software Reliability
Engineering, Annapolis, MD, November 12-1 5,2002
A. Nikora, M. Feather, H. Kwong-Fu, J. Hihn, R. Lutz, C. Mikulski, J.
Munson, J. Powell, “Software Metrics In Use at JPL Applications and
Research”, gfh IEEE International Software Metrics Symposium, June
417,2002, Ottawa, Ontario, Canada
A. Nikora, J. Munson, “Automated Software Fault Measurement”,
Assurance Technology Conference, Glenn Research Center, May 29-
30,2002
Norman F. Schneidewind, “Investigation of Logistic Regression as a
Discriminant of Software Quality”, proceedings of the International
Metrics Symposium, 2001
A. Nikora, J. Munson, “A Practical Software Fault Measurement and
Estimation Framework”, Industrial Practices presentation,
International Symposium on Software Reliability Engineering, Hong
Kong, November 27-30,2001 30

References and
Further Reading (cont’d)

[Schn99] N. Schneidewind, A. Nikora, “Predicting Deviations in Software
Quality by Using Relative Critical Value Deviation Metrics”,
proceedings of the 10th International Symposium on Software
Reliability Engineering, Boca Raton, FL, Nov 14,1999
A. Nikora, J. Munson, “Software Evolution and the Fault Process”,
proceedings, 23rd Annual Software Engineering Workshop,
NASNGoddard Space Flight Center, Greenbelt, MD, December 2-3,
1998

[N i k98]

[Schn97] Norman F. Schneidewind, “ A Software Metrics Model for Quality
Control”, Proceedings of the International Metrics Symposium,
Albuquerque, New Mexico, November 7,1997, pp. 127-1 36.
Norman F. Schneidewind, “A Software Metrics Model for Integrating
Quality Control and Prediction”, Proceedings of the International
Symposium on Software Reliability Engineering, Albuquerque, New
Mexico, November 4,1997, pp. 402-415.

[Schngira]

JPL
California
Institute of
Technology

SAS’02 31

