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Overview 
Objectives: Gain a better quantitative understanding of the effects of 
requirements changes on fault content of implemented system. Gain a 
better understanding of the type of faults that are insetted into a sofiware 
system during its lifetime. 

Use measurements to PREDICT faults, and so achieve better 

planning (e.g., time to allocate 
for testing, identify fault prone 
modules) 

that will lead to fewer faults) 
(e.g., choose design 

assessment (e.g., know 
close to being done testing) 

Structural Measurements Estimated Fault Counts by Type 
for Implemented System 

Structural Measurements 
of Specification of Source Code 
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Goals 
JPL 
California 
Institute of 
Technology . Quantify the effects of requirements changes on the 

fault content of the implemented system by 
identifying relationships between measurable 
characteristics of requirements change requests 
and the number and type of faults inserted into the 
system in response to those requests. . Improve understanding of the type of faults that are 
inserted into a software system during its lifetime 
by identifying relationships between types of 
structural change and the number and types of 
faults inserted. . Improve ability to discriminate between fault-prone 
modules and those that are not prone to faults. 
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Be nef i ts 
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Use easily obtained metrics to identify software 
components that pose a risk to software and 
system quality. 
- Implementation - identify modules that should 

have additional review prior to integration with 
rest of system 

changes to requirements on quality of 
implemented system. 

- Prior to implementation - estimate impact of 

Provide quantitative information as a basis for 
making decisions about software quality. 
Measurement framework can be used to continue 
learning as products and processes evolve. 
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Approach 
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Technology 

Measure structural evolution on collaborating 
development efforts 
- Initial set of structural evolution 

Analyze failure data 
measurements collected 

- Identify faults associated with reported failures 
- Classify identified faults according to 

- Identify module version at which each 

- Associate type of structural change with fault 

classification rules 

identified fault was inserted 

type 
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Approach (cont’d) 
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Institute of 
Technology 

Identify relationships between requirements 
change requests and implemented 
qual i ty/rel ia bi I i ty 
- Measure structural characteristics of 

requirements change requests (CRs). 
- Track CR through implementation and 

test 
- Analyze failure reports to identify faults 

inserted while implementing a CR 
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Approach: Structural 
Measurement Framework 

Problem Repons 
Files Identify Source \ 
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\ 

Source Files 
I I - 
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JPL 
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revision numbeffi. 

fault indices Compute 
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Institute of 
Technology 

PmportioMl Fault module name, revision number, 
Compute 

Burden fault index fault cwnt Burden 
Pwrt ional  Fault \ 

Fault 
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JPL Status California 
Institute of 
Technology 

Year 2 of planned 2-year study 
Investigated relationships between requirements risk and 
re1 ia bil ity . 
Installed improved version of structural and fault measurement 
framework on JPL development efforts 
- Participating efforts 

Mission Data System (MDS) 
Mars Exploration Rover (MER) 
Multimission Image Processing Laboratory (MIPL) 

- All aspects of measurement framework shown on slide 8 
can now be automated 

Fault identification and measurement was previously a strictly 
manual activity 

- Measurement is implemented in DARWIN, a network appliance 
Minimally intrusive 
Consistent measurement policies across multiple projects 
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Current Results: 
JPL 
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Institute of 
Technology 

Requirements Risk vs, Reliability 

Analyzed attributes of requirements that 
could cause software to be unreliable 

- Space 

- Issues 

Identified thresholds of risk factors for 
predicting when number of failures would 
become excessive 

Further details in [Schn02] 
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Technology 
Current Resu Its: 

Requirements Risk vs. Reliability 
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CF: Cumulative Failures 
CS: Cumulative Memory Space 
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Technology 
Current Resu I ts: 

Requirements Risk vs. Reliability 

B 
CF=.248 1860*(exp(.0107263*CI)) / 
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Current Results: Technology 

Requirements Risk vs. Reliability 
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Technology 
Current Results: 

Requirements Risk vs. Reliability 
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CS = (b+(bA2-(4*a*(c-CF)))"0.5)/(2*a) 
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Technology 
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Current Results: Fault 
Types vs. Structural Change 

Structural measurements collected for release 5 
of Mission Data System (MDS) 
- 1,828 source files 
- 66,063 unique modules 
- 2,197,916 total measurements made 

Fault index and proportional fault burdens 
computed 
- At system level 
- At individual module level 

Next slides show typical outputs of DARWIN 
network appliance 
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JPL 
DARWIN Portal - Main Page Institute California of - 

Technology 

Navigation 

DanvinMain 

Manager 
Infomation 

Tester Information 

Education 

F'roiect Manager 
~- ~ ~ 

View Avadable 
Databases 

Feedback 

The goal of the Darwm web p o d  IS to prom& a sohd easy to use mtcxfice to the D a "  system Contamed m 
dns web p o d  you CHI 6nd Manager Informahon, Tester Information. D m  Educatloa and 
Management 

This is the main page of the DARWIN measurement system's 
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DARWIN - Structural 
Evolution Plot 

Graph of Code Churn and Code Delta for the project 
fdms mdsv5 cvs. 

!lap.iLption 

DanvinMain - - 
Manager 
Momation 

rester Momation 

Education 

h i e c t  Manaeer 

View Avatlable 
Databases 

Feedback 

400000 c 

C%ck here for heb 

California 
Institute of 
Technology 

Chart of a system's structural evolution during development. This is available under 
"Manager Information". Clicking on a data point will bring up a report detailing the 

amount of change that occurred in each module. This plot shows some of the 
individual builds for release 5 of the MDS. 
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JPL DARWIN - Module-Level Build California 

Details 
- - 

Institute of 
Technology 

(Non-zero) Modules for build 2001-08-09 of project mdsv5_cvs, sorted by 
Churn since baseline. 

1 

ChmnFrmu 
B u e b e  

3108,478289 

2826.3 11554 
. - _~ 

~ 2726.351943 

2125.614228 

2254.132621 

1302 320181 

670.521910 

. -  ______ 
- 

1660.459373 

509.2%3008 
~~ 

- _ _ _ _  
~ 366.179343 - ~~ 

362.248144 

291.209341 
_ _ _ _ _ ~  

This report shows the amount of change that’s occurred for each 
module shown in this particular build (2001 -03-1 0). 
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Current Results: Fault 
Identification and Measurement 

Developing software fault models depends on 
definition of what constitutes a fault 
Desired characteristics of measurements, 
measurement process 
- Repeatable, accurate count of faults 
- Measure at same level at which structural 

- Easily automated 
More detail in [Mun02] 

measurements are taken 
Measure at module level (emsm, function, method) 
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C u rren t Res u Its : Fault 
ldentification and Measurement 

Approach 

- Examine changes made in response to 

- Base recognition/enumeration of 

reported failures 

software faults on the grammar of the 
software system’s language 

- Fault measurement granularity in terms 
of tokens that have changed 
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Current Results: Fault 
ldentifica tion and Measurement Techno*ogy 

Approach (cont’d) 
- Consider each line of text in each version of 

the program as a bag of tokens 
If a change spans multi le lines of code, all lines for 
the change are include Lp in the same bag 

- Number of faults based on bag differences 
between 

Version of program exhibiting failures 
Version of program modified in response to failures 

Changes due to repair and 
Changes due to functionality enhancements and 
other non-repair changes 

- Use version control system to distinguish 
between 
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C u rre n t Res u Its : Fault 
ldentification and Measurement 

Example 1 

-Original statement: a = b + c; 

- Modified statement: a = b = c; 

B, = {<a>, <=>, <b>, <+> Y <c>} 

B, = {<a>, <=>, <b>, <->, <c>} 

- Bl-  B2 {<+>, <I> } 
- PI I = lB2L le, - & I =  2 
-One token has changed 3 I fault 
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Current Results: Fault 
Identification and Measurement 

Example 2 
- Original statement: a = b = c; 

- Modified statement: a = c = b; 
B, = {<a>, <=>, <b>, <=> 9 <c>} 

B, = {<a>, <=>, <c>, <->, <b>} 

- B2 - B3 { } 
- IB2 I le,( 3 - 0 
- I fault representing incorrect 

sequencing 
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Current Results: Fault 
ldentification and Measurement 

Example 3 

- Original statement: a = b - c; 

- Modified statement: a = 1 + c = b; 

B, = {<a>, <=>, <c>, C->, <b>} 

B, = {<a>, <=>, <I>, <+>, CC>, <-> 9 <b>} 

- 2 new tokens representing 2 faults 
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Current Results: Fault 
Identification and Measurement 

Available FaiIure/FauIt Information 
- For each failure observed during MDS testing, 

the following information is available 
The names of the source file(s) involved in repairs 
The version number(s) of the source files in repairs 

- Example on next slide 
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Current Results: Fault 
Identification and Measurement 

MDS-Rep/sourcelMds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

Available FaiIure/Fau It Informat ion - Example 

~ _____ 

CurrentTime.cpp I 

make.cfg 4 

SAS’02 

MDS-Rep/source/Mds/Fw/Time/Tmgtlc++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

Directory I File name I Version 

~ 

make.cfg 3 

make.cfg 2 

RTDuration.cpp 2 

MDS-Rep/source/Mds/Fw/Time/Tmgtlc++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

~~ ~ 

RTEpoch.cpp 2 

RTEp0ch.h 2 

testRTDuration.cpp 0 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ I RTDurati0n.h 1 2  

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fwrrimerrmgt/c++/ 

TestRTDuration.cpp 1 

TestRTDuration.cpp 0 

TestRTDurati0n.h 2 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

~ ~ ~ _ _ _ _ _ _ _ _ _ _  

TestRTDurati0n.h 1 

TestRTDurati0n.h 0 

testRTEpoch.cpp 1 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

MDS-Rep/source/Mds/Fw/Time/Tmgt/c++/ 

Problem 
Report ID 

IAR-00182 

~ ~ 

TmgtException.cpp 0 

TmgtException.h 0 

IAR-00182 
~ ~_____  

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 
~ 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 

IAR-00182 
~~ ~ 

IAR-00182 

IAR-00182 
28 



JPL 
California 
Institute of 

Current Results: Fault 
Identification and Measurement 

Fault Identification and Counting Tool Output 

MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ArchetvDeConnectorFactorv.cDD 1 42 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchitectureElementDefinition.cDR 1 35 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchitecturelnstanceReaistrv.cDD 1 79 
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ArchitectureInstanceReaistrv.cDD 2 8 
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ArchitectureInstanceReaistrv.cDD 3 0 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ArchManaaedInstance.cDD 1 36 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.Callablelnterface.cDD 1 48 
MDS Fault countfMDS ReD.source.Mds.Fw.Car.c++.Callablelnterface.cDp 2 3 
MDS Fault counVMDS ReD.source.Mds.Fw.Car.c++.CGlMethodReaistration.cDD 1 4 
MDS Fault counVMDS ReD.source.Mds.Fw.Car.c++.Collection.cDD I 12 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.Collection.cDD 2 37 
MDS Fault countfMDS ReD.source.Mds.Fw.Car.c++.ComDonentComDonentLinklnstance.cDD 1 0 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ComDonentComDonentLinklnstance.cDD 2 65 
MDS Fault count/MDS Rep.source.Mds.Fw.Car.c++.ComDonentConnectorLinklnstance.cDD 1 0 
MDS Fault countlMDS Reo.source.Mds.Fw.Car.c++.ComDonentConnectorLinklnstance.cDD 2 50 
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ComDonentObiectLinklnstance.cDD 1 27 
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ComDonentObiectLinklnstanceArauments.cDp 1 0 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ComponentReaistration.cDD 1 2 
MDS Fault count/MDS ReD.source.Mds.Fw.Car.c++.ConcreteComDonentlnstance.cDD 1 8 
MDS Fault countlMDS Reu.source.Mds.Fw.Car.c++.ConcreteComDonentlnstance.cDD 2 0 
MDS Fault countlMDS Reo.source.Mds.Fw.Car.c++.ConcreteConnectorlnstance.cDp 1 42 
MDS Fault countlMDS ReD.source.Mds.Fw.Car.c++.ConcreteConnectorlnstance.cDP 2 27 

Output format: 

<Source file name> <source file version> <fault count> 
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