
Multi-Mission Sequencing Software
Laura Needels

Jet Propulsion Laboratory/California Institute of Technology
Pasadena, California

For Space Operations 2002 Conference, Houston, Texas
October 2002

Sequencing software for deep space missions has historically been one of the most critical parts of the
ground software used to communicate with and control the spacecraft. At JPL, the sequencing software is
responsible for planning and creation of science and engineering activities, checking command syntax,
checking mission and flight rules, and translating the commands into packets which can be uplinked to
the spacecraft. Significant effort has been spent by earlier missions to ensure the integrity of this software
since errors in this area could cause the spacecraft to enter fault protection or cause the loss of the
spacecraft.

Over the last several years, in an effort to reduce the costs associated with sequencing software, a multi-
mission form of sequencing software has been developed. The sequencing software is now developed as
two separate components. The multi-mission “core” software provides, in a generic sense, the capability
to perform the functions needed in the sequencing software: planning and scheduling events, checking
flight rules, and packetizing commands. The “core” software is then “adapted” to a project specific
mission. The “adaptation” part of the software task involves providing the models for activities needed
for planning and scheduling, converting the Command List for the project into models that can be used
for sequence checking, coding project and mission flight rules and the modeling needed to support them,
and developing project blocks for repetitive activities. I

By partitioning the sequencing software into a “core” component and an “adaptation” component, JPL
has been able to reduce costs. The core component of the software is verified once, by a central group,
rather than by multiple projects. Projects can then focus on verification of just the adaptation part of the
software. An additional cost saving with this methodology has been that it has allowed JPL to staff a
multi-mission adaptation team where personnel can move from one project to another with minimal start-
up and training time.

This paper describes the architecture of the JPL multi-mission sequencing system and demonstrates many
of the benefits of the coreladaptation format of the sequencing software.

Introduction

At JPL, the system used to develop the sequences to develop the commands sent to the JPL interplanetary
spacecraft consists of several different stages, sequence planning, sequence verification, and sequence
translation into spacecraft understandable binary. The software used to support these activities is known
as SEQ, and is shown in Figure 1.

1

Type A activities and three Type B activities) or add additional activities which would alleviate resource
constraints (add an additional DSN contact so that space on the data recorder becomes available).

Once a sequence has been generated and integrated, the checking is done by SeqGen. SeqGen checks
command syntax, mission rules, and flight rules. The sequence that SeqGen checks might have been
developed by ApGen or any number of other tools. Command syntax, such as the number of input
parameters, parameter types, etc. is done by SeqGen. SeqGen’s primary use is for mission and flight rule
checking. Historically, the mission and flight rules checked by SeqGen were more timing related, such as
“The catbed heaters must be turned on 5 minutes before the thrusters are fired,” or “Once the spacecraft
has been launched, the mission phase may never be set to pre-launch,”. SeqGen has also been used for
checking commands against spacecraft states, such as “The command may be used only while the
spacecraft is nadir pointed,” or “The command may not be issued while the spacecraft is in eclipse,”.
However, more recently, SeqGen has also been used to check for resource constraints at the command
level. SeqGen creates a spacecraft sequence file that contains the commands that will be sent to the
spacecraft.

The last step in the process is translating the commands into spacecraft readable binaries and converting
the sequences into packets. Spacecraft Language Interpreter and Collector (SLINC) is used for these two
steps. The only type of error checking that is done here is if a parameter is out of range, it will not be
translated, and SLINC will stop processing.

Multi-mission Architecture

In an effort to reduce project costs and development time, one area that began to develop was the idea of
reuse of sequencing software. The time and money involved in generating this software was significant,
and so software architectures that allowed for software reuse began to develop. SEQ was partitioned into
two parts, Core and Adaptation. SEQ Core software has the ability to perform a specific function. SEQ
Adaptation provides project specific components that rely on core functions.

TOOLS FOR:

-SCIENCE OPPORTUNITY

SEQUENCE AND ACTIVITY

-SEQUENCE DESIGN

-SEQUENCE INTEGRATION (I
VERIFICATION

*COMMAND GENERATION

ANALYSIS

PLANNING

CUSTOM
PROJECT

ADAPTATION
TOOLS AND SCRIPTS FOR
PROJECT-UNIQUE:

DATABASES AND SCRIPTS . FILE CONVERSIONS

FOR PROJECT-SPECIFIC: DATA INTERFACES

* COMMANDS - OTHER PROCESSES

* FLIGHT RULES - MODELS - OPERATIONS PROCESSES

PROCESS AUTOMATION (ASP)

Figure 2: Architectural View of SEQ

3

An analogy for this sort of division can be seen in tool used for word processing. In SEQ terminology,
the word processing software is piece of Core Software. The word processing software allows the user
the ability to pick various font types (Times, Ariel, Courier, and Symbol) and font representations (bold,
italic, and underlined) and paragraph alignments (left justified, right justified, and center justified). And it
is the user (the Adapter) who writes the text, chooses the styles and decides the purpose of the document
(a letter or a memo).

Examples of Core functionality and Adaptation tasks for the SEQ software tools are listed below.

SOA Core Functionality
1. SOA shall read a configuration file containing user specified file names and default values for

SOA initialization.
2. SOA shall have the Parameter and Model data from the User Interface Component for

interprocess communications.

SOA Adaptation Tasks
1. Define the configuration file to contain the correct kernel files, rule files, previously loaded

queries, search engine information, model files, default times, default bodies, etc.
2. Define the mapping between the parameter and model variables used in SOA and other programs

SOA communicates with.

POINTER Core Functionality
1. Provide the capability to display error and warning messages directly to the uses and/or the event

listing hardcopy.
2. The time formats written to a sequence file shall be Greenwich Mean Time (GMT), epoch plus

GMT, absolute clock time, epoch plus relative clock time.
3. During adaptation, read the Spacecraft Activity Type File for definitions of the SEQ-POINTER-

applicable activities.
4. The operator shall be able to override the default workstation desktop color assignments and fill

patterns by editing the Application Resource File.
5. Perform range checking on each parameter value.

1. Implement the error and warning messages, and the models needed to trigger them.
2. Define a set of useful epoch times.
3. Provide a Spacecraft Activity Type File that contains definitions for the activities that will be

used during modeling.
4. Provide a project adapted Application Resource File if the default configuration is not acceptable.
5. Provide ranges for parameter values.

POINTER Adaptation Tasks

ApGen Core Functionality
1. ApGen shall be delivered complete with an installation program.
2. Activity types shall have a mechanism to specify activity resource usage.

ApGen Adaptation Tasks
1. Provide an architecture which supports ApGen usage and the environment variables and files

needed by the program.
2. Provide the resource usage for each of the steps of a given activity. Define the resources the will

be monitored.

SeqGen Core Functionality

4

1.

2.

3.

4.

SeqGen shall display an indication of each rule violation, either in the window of the subsystem
involved in the rule, or in the timeline near a request causing a the rule violation.
Any textual display of time shall be either in UTC, or JPL local time or user local time including
automatic conversion to daylight savings time, or the flight projects Spacecraft Clock units or
epoch relative at the option of the user.
There shall be a command to allow the user to add a phrase of up to loo0 characters into the
runlog. SeqGen shall append the time of day to the phrase.
SeqGen shall convert “activities” into “steps”.

SeqGen Adaptation Tasks
1. Coding of the rules that are checked by SeqGen.
2. Define a useful set of epoch times.
3. Generate useful messages that will be included in the runlog. These messages will often include

information about rule violations, comments about the beginning or ending of a block, or
messages about parameters.

4. Define the steps needed to complete an activity

In the most widely used of these Core tools, SeqGen, the Adaptation effort has evolved so that it even
maintains a version of multi-mission aspects of the Adaptation that are used by all projects. These multi-
mission aspects are not functionality, as with a Core tool, but rather common pieces of Adaptation that
every project can use. This is shown in Figure 3 below.

TOOLS FOR:

SCIENCE OPPORTUNITY

*SEQUENCE AND ACTIVITY

*SEQUENCE DESIGN

-SEQUENCE INTEGRATION &
VERIFICATION

*COMMAND GENERATION

ANALYSIS

PLANNING

I
TOOLS AND SCRIPTS FOR
PROJECT-UNIQUE:

FILE CONVERSIONS

* DATA INTERFACES

OTHER PROCESSES

DATABASES AND SCRIPTS

FOR PROJECT-SPECIFIC: MODELS:

DATABASES AND SCRIPTS

* COMMANDS

FLIGHT RULES

* ORBIT PROPAGATION AND
TIMING GEOMETRY (OPTG)
MODEL

PROJECT MODELS DEEP SPACE NETWORK (DSN)
OPERATIONS PROCESSES ANTENNA MODELS

Figure 3: Expanded View of SEQ Architecture

Project Specific Components of Adaptation are described below:
0 The model response to commands. This includes checking rules, changing model states, etc.

Designation of commands that are hardware commands versus commands that are commands to
be handled by the flight software. These are safety checks that make sure that certain commands
are run only on the correct processor.

5

0

0

Flight and mission rules implementation. These are included in the modeling to automate the
prevention of undesirable spacecraft states.
Implementation of project specific modeling for states or resources. For example, modeling of
the Pointing and Control Subsystem may be needed to model timing of commands. Or, resources
such as battery state of charge may need to be modeled at the command level rather than the
activity level.
Implementation of blocks (sometimes called activities) which are a canned series of commands
that will be expanded for the user.

0

Common (Multi-mission) Components of Adaptation:
e

0

Modeling needed to read configuration files which control parameter values on the spacecraft.
Interpretation of Orbit Propagation and Timing Geometry (OPTG) files and models. These
models take the keywords and data in an OPTG file and use it to model when eclipse, occultation,
and other orbit and timing events occur.
Descriptors for DSN view period files that contain information needed to model the range of
antenna visibility.
Modeling needed to support the use of DSN antennas and equipment, including generation of
messages needed to generate keyword files used at the DSN.

0

0

Advantages and Disadvantages of this Architecture

There are several advantages and disadvantages of this architecture. The advantages of using the multi-
mission Core/Adapted software are time and cost savings. The disadvantage of this architecture is the
need to balance the needs of multiple customers.

Since the basis for the sequencing system already exists (the Core), simple commands (eg. a NOOP) can
be passed through the sequencing system very quickly after the start of the work. Binary commands that
will be sent to the spacecraft during Assembly, Launch, and Test Operations (ATLO) can be generated in
less than one week. This implies that testing using the real sequencing system can begin almost
immediately.

By having a Core piece of software, the correctness of the functionality of the software has already been
verified. Projects need to verify only the implementation of the adaptation. In cases where projects have
requested new capability, projects may be involved in validating the new capability.

Since the Core is used by many projects, there is a pool of available adapters who are familiar with the
sequencing software. Adapters can readily transition from one project to another. It is also much easier
for a project to get extra assistance during critical times because adapters are familiar with the sequencing
software and its use.

However, since the Core supports many customers, considerable effort must be spent to balance differing
project needs. Some customers may wish to have capabilities that conflict with other project needs. One
example that occurred recently involved a new project that wanted to enter decimal values in a hex field
and have them automatically translated to hex (“10” would be translated to “A”). However, existing
projects were entering the values as hex values (a user entering “10” meant the decimal value “16”). This
change could not be accommodated for the new user. Similarly, as sequencing strategies have evolved,
limitations in previous capability or software design strategies have been exposed. Some of these
problems must be preserved to accommodate legacy users. Finally, there have been times recently when
it has been difficult to balance the delivery schedules of new users. When several projects have critical

6

events (launch, orbit insertion, etc.) in the same year, it has been difficult to meet the needs of the
different ground data system integration schedules.

Conclusions

Over the last several years, the entire sequencing system has been converted to an architecture using Core
and Project Adaptation software. Each part of the sequencing package (the science planning and
scheduling programs, the resource modeling programs, and the constraint checking programs) has a Core
program that provides the functionality needed and an accompanying Adaptation that customizes the Core
to reflect project specific rules, models, and activities.

The change to a multi-mission architecture has resulted in cost and time savings to the project because the
real sequencing system can be used almost immediately to generate commands for the spacecraft and
because the functional aspects of the programs (the ability to expand activities into individual steps, the
ability to display warning and error messages, and the ability to convert spacecraft clock time into UTC or
JPL time) are tested once, rather than by each project. Use of a common set of sequencing software tools
also benefits projects because a pool of Adapters who are familiar with the software exists. The initial
ramp up time on a new project is very low and individuals available to alleviate critical schedules. The
difficulties involved with this architecture have been balancing the needs of several customers.

Acknowledgements

The research described in this publication was carried at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space Administration.

7

