Converging Voice and Data over Mission-Critical Networks

Richard W. Markley
Gerald G. Humphrey
Joseph Liu

NASA/ Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive M/S 303-210
Pasadena, CA 91109
richard.w.markley@jpl.nasa.gov

Funding for advanced engineering to reduce ground network infrastructure costs was provided by the NASA Office of Space Science.
Operational voice is used by Deep Space Mission System (DSMS) mission operations personnel to communicate verbal commands, status, marking conditions, and safety instructions.

During a typical mission track, sequence operations personnel use the voice capability to communicate valuable mission parameters including spacecraft downlink state and health.

Real-time mission tracking parameters are also communicated between the Project Operations Centers (POCs), and the antenna facilities.

The traditional DSMS voice architecture includes a central Raytheon Multi-Conference Digital Switch (MDS-1) to connect distributed users.

- Dedicated circuits
- Analog signals to 4-wire-interfaced end instruments.
Voice over IP (VoIP)

- There is a private DSMS IP data network capable of packet prioritization.

- Voice can be encoded into Internet Protocol (IP) networks based on ITU H.323-series standards.

- Enables voice to be packetized into standard IP format to be carried on the DSMS IP-based ground network.

- VoIP traffic stream of much smaller bandwidth, e.g. 8 kbps vs. normal 64 kbps per channel.

- In addition, experience has shown during a day, voice only uses bandwidth 3-6% of the time.
Quality of Service (QOS)

- Voice has inherent quality demands and hence requires preferential treatment traveling through data network.

- A number of QoS techniques are deployed to ensure co-existence of voice and data on the same IP network.

- Prioritized with highest priority over the DSMS routers for highest quality.
Implementation

- Initial operational voice pilot was implemented to support Space Infrared Telescope Facility (SIRTF) development between Pasadena, CA, and Sunnyvale, CA.
 - Across a T1 dedicated circuit in 1999.
 - The VoIP was allocated 12 kbps of bandwidth, with the balance for TCP/IP data.

- Based on this success, an operational system was installed to support two Project Operation Centers (POCs) for Mars Odyssey, at Arizona State University and University of Arizona.

- Additional installations followed to support Cassini's Huygens Probe Operations Center (HPOC) in the European Space Operations Center in Darmstadt, Germany, and the Deep Space Communications Complex (DSCCs) in Goldstone CA.

- Plans are to transition to VOIP in the DSCCs in Canberra, Australia, and Madrid, Spain.
Ops Voice over IP
Current Status

ECC
GDSCC
Goldstone

CDSCC
Australia

MDSCC
Spain

MDS-1 VOICE SWITCH

CCT Pasadena

MDS-1

Routers Inside Firewall
Routers Outside Firewall

Routers Inside Firewall
Routers Outside Firewall

ESOC
Germany
CAS/HUYGENS
INTEGRAL
ROSETTA
MARS EXPRESS

IPAC
Pasadena
SIRTF

BATC
Boulder
DEEP IMPACT

NASDA
Japan
DRTS-W

IRIS
Isolation

Dedicated Voice Lines to Routers

SITRF

LMMSC
Sunnyvale

JPL
Mission
Science

SOPCS
• MARIE (JSC)
• GRS (UA)

MARS
Results

- The architecture has proven to be very robust and has resulted in significant cost savings.
 - Eliminates separate voice circuits
 - Increase robustness because of redundancy built into the data network.

- Limited to WAN communications until the LAN can support priorities required for quality VOIP.

Next Steps
- Transition the LANs at the DSCCs to a type able to support VOIP over the LANs.

- Deploy appropriate end instruments at DSCCs (with Ethernet interfaces rather than 4-wire interfaces). Instruments under development.

- Deploy an IP-based central switch.